Metamath Proof Explorer


Theorem hgt750lema

Description: An upper bound on the contribution of the non-prime terms in the Statement 7.50 of Helfgott p. 69. (Contributed by Thierry Arnoux, 1-Jan-2022)

Ref Expression
Hypotheses hgt750leme.o O = z | ¬ 2 z
hgt750leme.n φ N
hgt750lemb.2 φ 2 N
hgt750lemb.a A = c repr 3 N | ¬ c 0 O
hgt750lema.f F = d c repr 3 N | ¬ c a O d if a = 0 I 0 ..^ 3 pmTrsp 0 ..^ 3 a 0
Assertion hgt750lema φ n repr 3 N O repr 3 N Λ n 0 Λ n 1 Λ n 2 3 n A Λ n 0 Λ n 1 Λ n 2

Proof

Step Hyp Ref Expression
1 hgt750leme.o O = z | ¬ 2 z
2 hgt750leme.n φ N
3 hgt750lemb.2 φ 2 N
4 hgt750lemb.a A = c repr 3 N | ¬ c 0 O
5 hgt750lema.f F = d c repr 3 N | ¬ c a O d if a = 0 I 0 ..^ 3 pmTrsp 0 ..^ 3 a 0
6 fzofi 0 ..^ 3 Fin
7 6 a1i φ 0 ..^ 3 Fin
8 2 nnnn0d φ N 0
9 3nn0 3 0
10 9 a1i φ 3 0
11 ssidd φ
12 8 10 11 reprfi2 φ repr 3 N Fin
13 ssrab2 c repr 3 N | ¬ c a O repr 3 N
14 13 a1i φ c repr 3 N | ¬ c a O repr 3 N
15 12 14 ssfid φ c repr 3 N | ¬ c a O Fin
16 15 adantr φ a 0 ..^ 3 c repr 3 N | ¬ c a O Fin
17 vmaf Λ :
18 17 a1i φ a 0 ..^ 3 n c repr 3 N | ¬ c a O Λ :
19 ssidd φ a 0 ..^ 3 n c repr 3 N | ¬ c a O
20 8 nn0zd φ N
21 20 ad2antrr φ a 0 ..^ 3 n c repr 3 N | ¬ c a O N
22 9 a1i φ a 0 ..^ 3 n c repr 3 N | ¬ c a O 3 0
23 simpr φ a 0 ..^ 3 n c repr 3 N | ¬ c a O n c repr 3 N | ¬ c a O
24 13 23 sseldi φ a 0 ..^ 3 n c repr 3 N | ¬ c a O n repr 3 N
25 19 21 22 24 reprf φ a 0 ..^ 3 n c repr 3 N | ¬ c a O n : 0 ..^ 3
26 c0ex 0 V
27 26 tpid1 0 0 1 2
28 fzo0to3tp 0 ..^ 3 = 0 1 2
29 27 28 eleqtrri 0 0 ..^ 3
30 29 a1i φ a 0 ..^ 3 n c repr 3 N | ¬ c a O 0 0 ..^ 3
31 25 30 ffvelrnd φ a 0 ..^ 3 n c repr 3 N | ¬ c a O n 0
32 18 31 ffvelrnd φ a 0 ..^ 3 n c repr 3 N | ¬ c a O Λ n 0
33 1ex 1 V
34 33 tpid2 1 0 1 2
35 34 28 eleqtrri 1 0 ..^ 3
36 35 a1i φ a 0 ..^ 3 n c repr 3 N | ¬ c a O 1 0 ..^ 3
37 25 36 ffvelrnd φ a 0 ..^ 3 n c repr 3 N | ¬ c a O n 1
38 18 37 ffvelrnd φ a 0 ..^ 3 n c repr 3 N | ¬ c a O Λ n 1
39 2ex 2 V
40 39 tpid3 2 0 1 2
41 40 28 eleqtrri 2 0 ..^ 3
42 41 a1i φ a 0 ..^ 3 n c repr 3 N | ¬ c a O 2 0 ..^ 3
43 25 42 ffvelrnd φ a 0 ..^ 3 n c repr 3 N | ¬ c a O n 2
44 18 43 ffvelrnd φ a 0 ..^ 3 n c repr 3 N | ¬ c a O Λ n 2
45 38 44 remulcld φ a 0 ..^ 3 n c repr 3 N | ¬ c a O Λ n 1 Λ n 2
46 32 45 remulcld φ a 0 ..^ 3 n c repr 3 N | ¬ c a O Λ n 0 Λ n 1 Λ n 2
47 vmage0 n 0 0 Λ n 0
48 31 47 syl φ a 0 ..^ 3 n c repr 3 N | ¬ c a O 0 Λ n 0
49 vmage0 n 1 0 Λ n 1
50 37 49 syl φ a 0 ..^ 3 n c repr 3 N | ¬ c a O 0 Λ n 1
51 vmage0 n 2 0 Λ n 2
52 43 51 syl φ a 0 ..^ 3 n c repr 3 N | ¬ c a O 0 Λ n 2
53 38 44 50 52 mulge0d φ a 0 ..^ 3 n c repr 3 N | ¬ c a O 0 Λ n 1 Λ n 2
54 32 45 48 53 mulge0d φ a 0 ..^ 3 n c repr 3 N | ¬ c a O 0 Λ n 0 Λ n 1 Λ n 2
55 7 16 46 54 fsumiunle φ n a 0 ..^ 3 c repr 3 N | ¬ c a O Λ n 0 Λ n 1 Λ n 2 a 0 ..^ 3 n c repr 3 N | ¬ c a O Λ n 0 Λ n 1 Λ n 2
56 eqid c repr 3 N | ¬ c a O = c repr 3 N | ¬ c a O
57 inss2 O
58 prmssnn
59 57 58 sstri O
60 59 a1i φ O
61 56 11 60 8 10 reprdifc φ repr 3 N O repr 3 N = a 0 ..^ 3 c repr 3 N | ¬ c a O
62 61 sumeq1d φ n repr 3 N O repr 3 N Λ n 0 Λ n 1 Λ n 2 = n a 0 ..^ 3 c repr 3 N | ¬ c a O Λ n 0 Λ n 1 Λ n 2
63 ssrab2 c repr 3 N | ¬ c 0 O repr 3 N
64 63 a1i φ c repr 3 N | ¬ c 0 O repr 3 N
65 12 64 ssfid φ c repr 3 N | ¬ c 0 O Fin
66 17 a1i φ n c repr 3 N | ¬ c 0 O Λ :
67 ssidd φ n c repr 3 N | ¬ c 0 O
68 20 adantr φ n c repr 3 N | ¬ c 0 O N
69 9 a1i φ n c repr 3 N | ¬ c 0 O 3 0
70 64 sselda φ n c repr 3 N | ¬ c 0 O n repr 3 N
71 67 68 69 70 reprf φ n c repr 3 N | ¬ c 0 O n : 0 ..^ 3
72 29 a1i φ n c repr 3 N | ¬ c 0 O 0 0 ..^ 3
73 71 72 ffvelrnd φ n c repr 3 N | ¬ c 0 O n 0
74 66 73 ffvelrnd φ n c repr 3 N | ¬ c 0 O Λ n 0
75 35 a1i φ n c repr 3 N | ¬ c 0 O 1 0 ..^ 3
76 71 75 ffvelrnd φ n c repr 3 N | ¬ c 0 O n 1
77 66 76 ffvelrnd φ n c repr 3 N | ¬ c 0 O Λ n 1
78 41 a1i φ n c repr 3 N | ¬ c 0 O 2 0 ..^ 3
79 71 78 ffvelrnd φ n c repr 3 N | ¬ c 0 O n 2
80 66 79 ffvelrnd φ n c repr 3 N | ¬ c 0 O Λ n 2
81 77 80 remulcld φ n c repr 3 N | ¬ c 0 O Λ n 1 Λ n 2
82 74 81 remulcld φ n c repr 3 N | ¬ c 0 O Λ n 0 Λ n 1 Λ n 2
83 65 82 fsumrecl φ n c repr 3 N | ¬ c 0 O Λ n 0 Λ n 1 Λ n 2
84 83 recnd φ n c repr 3 N | ¬ c 0 O Λ n 0 Λ n 1 Λ n 2
85 fsumconst 0 ..^ 3 Fin n c repr 3 N | ¬ c 0 O Λ n 0 Λ n 1 Λ n 2 a 0 ..^ 3 n c repr 3 N | ¬ c 0 O Λ n 0 Λ n 1 Λ n 2 = 0 ..^ 3 n c repr 3 N | ¬ c 0 O Λ n 0 Λ n 1 Λ n 2
86 7 84 85 syl2anc φ a 0 ..^ 3 n c repr 3 N | ¬ c 0 O Λ n 0 Λ n 1 Λ n 2 = 0 ..^ 3 n c repr 3 N | ¬ c 0 O Λ n 0 Λ n 1 Λ n 2
87 fveq1 n = F e n 0 = F e 0
88 87 fveq2d n = F e Λ n 0 = Λ F e 0
89 fveq1 n = F e n 1 = F e 1
90 89 fveq2d n = F e Λ n 1 = Λ F e 1
91 fveq1 n = F e n 2 = F e 2
92 91 fveq2d n = F e Λ n 2 = Λ F e 2
93 90 92 oveq12d n = F e Λ n 1 Λ n 2 = Λ F e 1 Λ F e 2
94 88 93 oveq12d n = F e Λ n 0 Λ n 1 Λ n 2 = Λ F e 0 Λ F e 1 Λ F e 2
95 3nn 3
96 95 a1i φ 3
97 96 ralrimivw φ a 0 ..^ 3 3
98 97 r19.21bi φ a 0 ..^ 3 3
99 20 adantr φ a 0 ..^ 3 N
100 ssidd φ a 0 ..^ 3
101 simpr φ a 0 ..^ 3 a 0 ..^ 3
102 fveq1 c = d c 0 = d 0
103 102 eleq1d c = d c 0 O d 0 O
104 103 notbid c = d ¬ c 0 O ¬ d 0 O
105 104 cbvrabv c repr 3 N | ¬ c 0 O = d repr 3 N | ¬ d 0 O
106 fveq1 c = d c a = d a
107 106 eleq1d c = d c a O d a O
108 107 notbid c = d ¬ c a O ¬ d a O
109 108 cbvrabv c repr 3 N | ¬ c a O = d repr 3 N | ¬ d a O
110 eqid if a = 0 I 0 ..^ 3 pmTrsp 0 ..^ 3 a 0 = if a = 0 I 0 ..^ 3 pmTrsp 0 ..^ 3 a 0
111 98 99 100 101 105 109 110 5 reprpmtf1o φ a 0 ..^ 3 F : c repr 3 N | ¬ c a O 1-1 onto c repr 3 N | ¬ c 0 O
112 eqidd φ a 0 ..^ 3 e c repr 3 N | ¬ c a O F e = F e
113 82 adantlr φ a 0 ..^ 3 n c repr 3 N | ¬ c 0 O Λ n 0 Λ n 1 Λ n 2
114 113 recnd φ a 0 ..^ 3 n c repr 3 N | ¬ c 0 O Λ n 0 Λ n 1 Λ n 2
115 94 16 111 112 114 fsumf1o φ a 0 ..^ 3 n c repr 3 N | ¬ c 0 O Λ n 0 Λ n 1 Λ n 2 = e c repr 3 N | ¬ c a O Λ F e 0 Λ F e 1 Λ F e 2
116 fveq2 e = n F e = F n
117 116 fveq1d e = n F e 0 = F n 0
118 117 fveq2d e = n Λ F e 0 = Λ F n 0
119 116 fveq1d e = n F e 1 = F n 1
120 119 fveq2d e = n Λ F e 1 = Λ F n 1
121 116 fveq1d e = n F e 2 = F n 2
122 121 fveq2d e = n Λ F e 2 = Λ F n 2
123 120 122 oveq12d e = n Λ F e 1 Λ F e 2 = Λ F n 1 Λ F n 2
124 118 123 oveq12d e = n Λ F e 0 Λ F e 1 Λ F e 2 = Λ F n 0 Λ F n 1 Λ F n 2
125 124 cbvsumv e c repr 3 N | ¬ c a O Λ F e 0 Λ F e 1 Λ F e 2 = n c repr 3 N | ¬ c a O Λ F n 0 Λ F n 1 Λ F n 2
126 125 a1i φ a 0 ..^ 3 e c repr 3 N | ¬ c a O Λ F e 0 Λ F e 1 Λ F e 2 = n c repr 3 N | ¬ c a O Λ F n 0 Λ F n 1 Λ F n 2
127 ovexd φ a 0 ..^ 3 n c repr 3 N | ¬ c a O 0 ..^ 3 V
128 101 adantr φ a 0 ..^ 3 n c repr 3 N | ¬ c a O a 0 ..^ 3
129 127 128 30 110 pmtridf1o φ a 0 ..^ 3 n c repr 3 N | ¬ c a O if a = 0 I 0 ..^ 3 pmTrsp 0 ..^ 3 a 0 : 0 ..^ 3 1-1 onto 0 ..^ 3
130 5 129 25 18 23 hgt750lemg φ a 0 ..^ 3 n c repr 3 N | ¬ c a O Λ F n 0 Λ F n 1 Λ F n 2 = Λ n 0 Λ n 1 Λ n 2
131 130 sumeq2dv φ a 0 ..^ 3 n c repr 3 N | ¬ c a O Λ F n 0 Λ F n 1 Λ F n 2 = n c repr 3 N | ¬ c a O Λ n 0 Λ n 1 Λ n 2
132 115 126 131 3eqtrrd φ a 0 ..^ 3 n c repr 3 N | ¬ c a O Λ n 0 Λ n 1 Λ n 2 = n c repr 3 N | ¬ c 0 O Λ n 0 Λ n 1 Λ n 2
133 132 sumeq2dv φ a 0 ..^ 3 n c repr 3 N | ¬ c a O Λ n 0 Λ n 1 Λ n 2 = a 0 ..^ 3 n c repr 3 N | ¬ c 0 O Λ n 0 Λ n 1 Λ n 2
134 hashfzo0 3 0 0 ..^ 3 = 3
135 9 134 ax-mp 0 ..^ 3 = 3
136 135 a1i φ 0 ..^ 3 = 3
137 136 eqcomd φ 3 = 0 ..^ 3
138 4 a1i φ A = c repr 3 N | ¬ c 0 O
139 138 sumeq1d φ n A Λ n 0 Λ n 1 Λ n 2 = n c repr 3 N | ¬ c 0 O Λ n 0 Λ n 1 Λ n 2
140 137 139 oveq12d φ 3 n A Λ n 0 Λ n 1 Λ n 2 = 0 ..^ 3 n c repr 3 N | ¬ c 0 O Λ n 0 Λ n 1 Λ n 2
141 86 133 140 3eqtr4rd φ 3 n A Λ n 0 Λ n 1 Λ n 2 = a 0 ..^ 3 n c repr 3 N | ¬ c a O Λ n 0 Λ n 1 Λ n 2
142 55 62 141 3brtr4d φ n repr 3 N O repr 3 N Λ n 0 Λ n 1 Λ n 2 3 n A Λ n 0 Λ n 1 Λ n 2