Metamath Proof Explorer


Theorem hgt750lemg

Description: Lemma for the statement 7.50 of Helfgott p. 69. Applying a permutation T to the three factors of a product does not change the result. (Contributed by Thierry Arnoux, 1-Jan-2022)

Ref Expression
Hypotheses hgt750lemg.f F = c R c T
hgt750lemg.t φ T : 0 ..^ 3 1-1 onto 0 ..^ 3
hgt750lemg.n φ N : 0 ..^ 3
hgt750lemg.l φ L :
hgt750lemg.1 φ N R
Assertion hgt750lemg φ L F N 0 L F N 1 L F N 2 = L N 0 L N 1 L N 2

Proof

Step Hyp Ref Expression
1 hgt750lemg.f F = c R c T
2 hgt750lemg.t φ T : 0 ..^ 3 1-1 onto 0 ..^ 3
3 hgt750lemg.n φ N : 0 ..^ 3
4 hgt750lemg.l φ L :
5 hgt750lemg.1 φ N R
6 2fveq3 a = T b L N a = L N T b
7 tpfi 0 1 2 Fin
8 7 a1i φ 0 1 2 Fin
9 fzo0to3tp 0 ..^ 3 = 0 1 2
10 f1oeq23 0 ..^ 3 = 0 1 2 0 ..^ 3 = 0 1 2 T : 0 ..^ 3 1-1 onto 0 ..^ 3 T : 0 1 2 1-1 onto 0 1 2
11 9 9 10 mp2an T : 0 ..^ 3 1-1 onto 0 ..^ 3 T : 0 1 2 1-1 onto 0 1 2
12 2 11 sylib φ T : 0 1 2 1-1 onto 0 1 2
13 eqidd φ b 0 1 2 T b = T b
14 4 adantr φ a 0 1 2 L :
15 3 adantr φ a 0 1 2 N : 0 ..^ 3
16 simpr φ a 0 1 2 a 0 1 2
17 16 9 eleqtrrdi φ a 0 1 2 a 0 ..^ 3
18 15 17 ffvelrnd φ a 0 1 2 N a
19 14 18 ffvelrnd φ a 0 1 2 L N a
20 19 recnd φ a 0 1 2 L N a
21 6 8 12 13 20 fprodf1o φ a 0 1 2 L N a = b 0 1 2 L N T b
22 1 a1i φ F = c R c T
23 simpr φ c = N c = N
24 23 coeq1d φ c = N c T = N T
25 f1of T : 0 ..^ 3 1-1 onto 0 ..^ 3 T : 0 ..^ 3 0 ..^ 3
26 2 25 syl φ T : 0 ..^ 3 0 ..^ 3
27 ovexd φ 0 ..^ 3 V
28 fex2 T : 0 ..^ 3 0 ..^ 3 0 ..^ 3 V 0 ..^ 3 V T V
29 26 27 27 28 syl3anc φ T V
30 coexg N R T V N T V
31 5 29 30 syl2anc φ N T V
32 22 24 5 31 fvmptd φ F N = N T
33 32 adantr φ b 0 1 2 F N = N T
34 33 fveq1d φ b 0 1 2 F N b = N T b
35 f1ofun T : 0 ..^ 3 1-1 onto 0 ..^ 3 Fun T
36 2 35 syl φ Fun T
37 36 adantr φ b 0 1 2 Fun T
38 f1odm T : 0 1 2 1-1 onto 0 1 2 dom T = 0 1 2
39 12 38 syl φ dom T = 0 1 2
40 39 eleq2d φ b dom T b 0 1 2
41 40 biimpar φ b 0 1 2 b dom T
42 fvco Fun T b dom T N T b = N T b
43 37 41 42 syl2anc φ b 0 1 2 N T b = N T b
44 34 43 eqtr2d φ b 0 1 2 N T b = F N b
45 44 fveq2d φ b 0 1 2 L N T b = L F N b
46 45 prodeq2dv φ b 0 1 2 L N T b = b 0 1 2 L F N b
47 21 46 eqtr2d φ b 0 1 2 L F N b = a 0 1 2 L N a
48 2fveq3 b = 0 L F N b = L F N 0
49 2fveq3 b = 1 L F N b = L F N 1
50 c0ex 0 V
51 50 a1i φ 0 V
52 1ex 1 V
53 52 a1i φ 1 V
54 32 fveq1d φ F N 0 = N T 0
55 50 tpid1 0 0 1 2
56 55 39 eleqtrrid φ 0 dom T
57 fvco Fun T 0 dom T N T 0 = N T 0
58 36 56 57 syl2anc φ N T 0 = N T 0
59 54 58 eqtrd φ F N 0 = N T 0
60 55 9 eleqtrri 0 0 ..^ 3
61 60 a1i φ 0 0 ..^ 3
62 26 61 ffvelrnd φ T 0 0 ..^ 3
63 3 62 ffvelrnd φ N T 0
64 59 63 eqeltrd φ F N 0
65 4 64 ffvelrnd φ L F N 0
66 65 recnd φ L F N 0
67 32 fveq1d φ F N 1 = N T 1
68 52 tpid2 1 0 1 2
69 68 39 eleqtrrid φ 1 dom T
70 fvco Fun T 1 dom T N T 1 = N T 1
71 36 69 70 syl2anc φ N T 1 = N T 1
72 67 71 eqtrd φ F N 1 = N T 1
73 68 9 eleqtrri 1 0 ..^ 3
74 73 a1i φ 1 0 ..^ 3
75 26 74 ffvelrnd φ T 1 0 ..^ 3
76 3 75 ffvelrnd φ N T 1
77 72 76 eqeltrd φ F N 1
78 4 77 ffvelrnd φ L F N 1
79 78 recnd φ L F N 1
80 0ne1 0 1
81 80 a1i φ 0 1
82 2fveq3 b = 2 L F N b = L F N 2
83 2ex 2 V
84 83 a1i φ 2 V
85 32 fveq1d φ F N 2 = N T 2
86 83 tpid3 2 0 1 2
87 86 39 eleqtrrid φ 2 dom T
88 fvco Fun T 2 dom T N T 2 = N T 2
89 36 87 88 syl2anc φ N T 2 = N T 2
90 85 89 eqtrd φ F N 2 = N T 2
91 86 9 eleqtrri 2 0 ..^ 3
92 91 a1i φ 2 0 ..^ 3
93 26 92 ffvelrnd φ T 2 0 ..^ 3
94 3 93 ffvelrnd φ N T 2
95 90 94 eqeltrd φ F N 2
96 4 95 ffvelrnd φ L F N 2
97 96 recnd φ L F N 2
98 0ne2 0 2
99 98 a1i φ 0 2
100 1ne2 1 2
101 100 a1i φ 1 2
102 48 49 51 53 66 79 81 82 84 97 99 101 prodtp φ b 0 1 2 L F N b = L F N 0 L F N 1 L F N 2
103 2fveq3 a = 0 L N a = L N 0
104 2fveq3 a = 1 L N a = L N 1
105 3 61 ffvelrnd φ N 0
106 4 105 ffvelrnd φ L N 0
107 106 recnd φ L N 0
108 3 74 ffvelrnd φ N 1
109 4 108 ffvelrnd φ L N 1
110 109 recnd φ L N 1
111 2fveq3 a = 2 L N a = L N 2
112 3 92 ffvelrnd φ N 2
113 4 112 ffvelrnd φ L N 2
114 113 recnd φ L N 2
115 103 104 51 53 107 110 81 111 84 114 99 101 prodtp φ a 0 1 2 L N a = L N 0 L N 1 L N 2
116 47 102 115 3eqtr3d φ L F N 0 L F N 1 L F N 2 = L N 0 L N 1 L N 2
117 66 79 97 mulassd φ L F N 0 L F N 1 L F N 2 = L F N 0 L F N 1 L F N 2
118 107 110 114 mulassd φ L N 0 L N 1 L N 2 = L N 0 L N 1 L N 2
119 116 117 118 3eqtr3d φ L F N 0 L F N 1 L F N 2 = L N 0 L N 1 L N 2