Metamath Proof Explorer


Theorem fsumiunle

Description: Upper bound for a sum of nonnegative terms over an indexed union. The inequality may be strict if the indexed union is non-disjoint, since in the right hand side, a summand may be counted several times. (Contributed by Thierry Arnoux, 1-Jan-2021)

Ref Expression
Hypotheses fsumiunle.1 φ A Fin
fsumiunle.2 φ x A B Fin
fsumiunle.3 φ x A k B C
fsumiunle.4 φ x A k B 0 C
Assertion fsumiunle φ k x A B C x A k B C

Proof

Step Hyp Ref Expression
1 fsumiunle.1 φ A Fin
2 fsumiunle.2 φ x A B Fin
3 fsumiunle.3 φ x A k B C
4 fsumiunle.4 φ x A k B 0 C
5 1 2 aciunf1 φ f f : x A B 1-1 x A x × B l x A B 2 nd f l = l
6 f1f1orn f : x A B 1-1 x A x × B f : x A B 1-1 onto ran f
7 6 anim1i f : x A B 1-1 x A x × B l x A B 2 nd f l = l f : x A B 1-1 onto ran f l x A B 2 nd f l = l
8 f1f f : x A B 1-1 x A x × B f : x A B x A x × B
9 8 frnd f : x A B 1-1 x A x × B ran f x A x × B
10 9 adantr f : x A B 1-1 x A x × B l x A B 2 nd f l = l ran f x A x × B
11 7 10 jca f : x A B 1-1 x A x × B l x A B 2 nd f l = l f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B
12 11 eximi f f : x A B 1-1 x A x × B l x A B 2 nd f l = l f f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B
13 5 12 syl φ f f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B
14 csbeq1a k = y C = y / k C
15 nfcv _ y x A B
16 nfcv _ k x A B
17 nfcv _ y C
18 nfcsb1v _ k y / k C
19 14 15 16 17 18 cbvsum k x A B C = y x A B y / k C
20 csbeq1 y = 2 nd z y / k C = 2 nd z / k C
21 snfi x Fin
22 xpfi x Fin B Fin x × B Fin
23 21 2 22 sylancr φ x A x × B Fin
24 23 ralrimiva φ x A x × B Fin
25 iunfi A Fin x A x × B Fin x A x × B Fin
26 1 24 25 syl2anc φ x A x × B Fin
27 26 adantr φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B x A x × B Fin
28 simprr φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B ran f x A x × B
29 27 28 ssfid φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B ran f Fin
30 simprl φ f : x A B 1-1 onto ran f ran f x A x × B f : x A B 1-1 onto ran f
31 f1ocnv f : x A B 1-1 onto ran f f -1 : ran f 1-1 onto x A B
32 30 31 syl φ f : x A B 1-1 onto ran f ran f x A x × B f -1 : ran f 1-1 onto x A B
33 32 adantrlr φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B f -1 : ran f 1-1 onto x A B
34 nfv x φ
35 nfcv _ x f
36 nfiu1 _ x x A B
37 35 nfrn _ x ran f
38 35 36 37 nff1o x f : x A B 1-1 onto ran f
39 nfv x 2 nd f l = l
40 36 39 nfralw x l x A B 2 nd f l = l
41 38 40 nfan x f : x A B 1-1 onto ran f l x A B 2 nd f l = l
42 nfcv _ x ran f
43 nfiu1 _ x x A x × B
44 42 43 nfss x ran f x A x × B
45 41 44 nfan x f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B
46 34 45 nfan x φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B
47 nfv x z ran f
48 46 47 nfan x φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f
49 simpr φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B k x A B f k = z f k = z
50 49 fveq2d φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B k x A B f k = z 2 nd f k = 2 nd z
51 simplr φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B k x A B f k = z k x A B
52 simp-4r φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B
53 52 simpld φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B f : x A B 1-1 onto ran f l x A B 2 nd f l = l
54 53 simprd φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B l x A B 2 nd f l = l
55 54 ad2antrr φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B k x A B f k = z l x A B 2 nd f l = l
56 2fveq3 l = k 2 nd f l = 2 nd f k
57 id l = k l = k
58 56 57 eqeq12d l = k 2 nd f l = l 2 nd f k = k
59 58 rspcva k x A B l x A B 2 nd f l = l 2 nd f k = k
60 51 55 59 syl2anc φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B k x A B f k = z 2 nd f k = k
61 50 60 eqtr3d φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B k x A B f k = z 2 nd z = k
62 53 simpld φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B f : x A B 1-1 onto ran f
63 62 ad2antrr φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B k x A B f k = z f : x A B 1-1 onto ran f
64 f1ocnvfv1 f : x A B 1-1 onto ran f k x A B f -1 f k = k
65 63 51 64 syl2anc φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B k x A B f k = z f -1 f k = k
66 49 fveq2d φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B k x A B f k = z f -1 f k = f -1 z
67 61 65 66 3eqtr2rd φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B k x A B f k = z f -1 z = 2 nd z
68 f1ofn f : x A B 1-1 onto ran f f Fn x A B
69 62 68 syl φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B f Fn x A B
70 simpllr φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B z ran f
71 fvelrnb f Fn x A B z ran f k x A B f k = z
72 71 biimpa f Fn x A B z ran f k x A B f k = z
73 69 70 72 syl2anc φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B k x A B f k = z
74 67 73 r19.29a φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B f -1 z = 2 nd z
75 28 sselda φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f z x A x × B
76 eliun z x A x × B x A z x × B
77 75 76 sylib φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f x A z x × B
78 48 74 77 r19.29af φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f f -1 z = 2 nd z
79 nfv k φ y x A B
80 nfcv _ k
81 18 80 nfel k y / k C
82 79 81 nfim k φ y x A B y / k C
83 eleq1w k = y k x A B y x A B
84 83 anbi2d k = y φ k x A B φ y x A B
85 14 eleq1d k = y C y / k C
86 84 85 imbi12d k = y φ k x A B C φ y x A B y / k C
87 nfcv _ x k
88 87 36 nfel x k x A B
89 34 88 nfan x φ k x A B
90 3 adantllr φ k x A B x A k B C
91 90 recnd φ k x A B x A k B C
92 eliun k x A B x A k B
93 92 biimpi k x A B x A k B
94 93 adantl φ k x A B x A k B
95 89 91 94 r19.29af φ k x A B C
96 82 86 95 chvarfv φ y x A B y / k C
97 96 adantlr φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B y x A B y / k C
98 20 29 33 78 97 fsumf1o φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B y x A B y / k C = z ran f 2 nd z / k C
99 19 98 syl5eq φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B k x A B C = z ran f 2 nd z / k C
100 99 eqcomd φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f 2 nd z / k C = k x A B C
101 nfcv _ x z
102 101 43 nfel x z x A x × B
103 34 102 nfan x φ z x A x × B
104 xp2nd z x × B 2 nd z B
105 104 adantl φ z x A x × B x A z x × B 2 nd z B
106 3 ralrimiva φ x A k B C
107 106 adantlr φ z x A x × B x A k B C
108 107 adantr φ z x A x × B x A z x × B k B C
109 nfcsb1v _ k 2 nd z / k C
110 109 nfel1 k 2 nd z / k C
111 csbeq1a k = 2 nd z C = 2 nd z / k C
112 111 eleq1d k = 2 nd z C 2 nd z / k C
113 110 112 rspc 2 nd z B k B C 2 nd z / k C
114 113 imp 2 nd z B k B C 2 nd z / k C
115 105 108 114 syl2anc φ z x A x × B x A z x × B 2 nd z / k C
116 76 biimpi z x A x × B x A z x × B
117 116 adantl φ z x A x × B x A z x × B
118 103 115 117 r19.29af φ z x A x × B 2 nd z / k C
119 118 adantlr φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z x A x × B 2 nd z / k C
120 xp1st z x × B 1 st z x
121 elsni 1 st z x 1 st z = x
122 120 121 syl z x × B 1 st z = x
123 122 104 jca z x × B 1 st z = x 2 nd z B
124 simplll φ z x A x × B x A 1 st z = x 2 nd z B φ
125 simplr φ z x A x × B x A 1 st z = x 2 nd z B x A
126 4 ralrimiva φ x A k B 0 C
127 124 125 126 syl2anc φ z x A x × B x A 1 st z = x 2 nd z B k B 0 C
128 123 127 sylan2 φ z x A x × B x A z x × B k B 0 C
129 nfcv _ k 0
130 nfcv _ k
131 129 130 109 nfbr k 0 2 nd z / k C
132 111 breq2d k = 2 nd z 0 C 0 2 nd z / k C
133 131 132 rspc 2 nd z B k B 0 C 0 2 nd z / k C
134 133 imp 2 nd z B k B 0 C 0 2 nd z / k C
135 105 128 134 syl2anc φ z x A x × B x A z x × B 0 2 nd z / k C
136 103 135 117 r19.29af φ z x A x × B 0 2 nd z / k C
137 136 adantlr φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z x A x × B 0 2 nd z / k C
138 27 119 137 28 fsumless φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B z ran f 2 nd z / k C z x A x × B 2 nd z / k C
139 100 138 eqbrtrrd φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B k x A B C z x A x × B 2 nd z / k C
140 nfcv _ y B
141 nfcv _ k B
142 14 140 141 17 18 cbvsum k B C = y B y / k C
143 142 a1i φ k B C = y B y / k C
144 143 sumeq2sdv φ x A k B C = x A y B y / k C
145 vex x V
146 vex y V
147 145 146 op2ndd z = x y 2 nd z = y
148 147 eqcomd z = x y y = 2 nd z
149 148 csbeq1d z = x y y / k C = 2 nd z / k C
150 149 eqcomd z = x y 2 nd z / k C = y / k C
151 nfv k φ x A y B
152 18 nfel1 k y / k C
153 151 152 nfim k φ x A y B y / k C
154 eleq1w k = y k B y B
155 154 anbi2d k = y φ x A k B φ x A y B
156 155 85 imbi12d k = y φ x A k B C φ x A y B y / k C
157 3 recnd φ x A k B C
158 153 156 157 chvarfv φ x A y B y / k C
159 158 anasss φ x A y B y / k C
160 150 1 2 159 fsum2d φ x A y B y / k C = z x A x × B 2 nd z / k C
161 144 160 eqtrd φ x A k B C = z x A x × B 2 nd z / k C
162 161 adantr φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B x A k B C = z x A x × B 2 nd z / k C
163 139 162 breqtrrd φ f : x A B 1-1 onto ran f l x A B 2 nd f l = l ran f x A x × B k x A B C x A k B C
164 13 163 exlimddv φ k x A B C x A k B C