Step |
Hyp |
Ref |
Expression |
1 |
|
hgt750leme.o |
|
2 |
|
hgt750leme.n |
|
3 |
|
hgt750lemb.2 |
|
4 |
|
hgt750lemb.a |
|
5 |
2
|
nnnn0d |
|
6 |
|
3nn0 |
|
7 |
6
|
a1i |
|
8 |
|
ssidd |
|
9 |
5 7 8
|
reprfi2 |
|
10 |
4
|
ssrab3 |
|
11 |
|
ssfi |
|
12 |
9 10 11
|
sylancl |
|
13 |
|
vmaf |
|
14 |
13
|
a1i |
|
15 |
|
ssidd |
|
16 |
2
|
nnzd |
|
17 |
16
|
adantr |
|
18 |
6
|
a1i |
|
19 |
|
simpr |
|
20 |
10 19
|
sselid |
|
21 |
15 17 18 20
|
reprf |
|
22 |
|
c0ex |
|
23 |
22
|
tpid1 |
|
24 |
|
fzo0to3tp |
|
25 |
23 24
|
eleqtrri |
|
26 |
25
|
a1i |
|
27 |
21 26
|
ffvelrnd |
|
28 |
14 27
|
ffvelrnd |
|
29 |
|
1ex |
|
30 |
29
|
tpid2 |
|
31 |
30 24
|
eleqtrri |
|
32 |
31
|
a1i |
|
33 |
21 32
|
ffvelrnd |
|
34 |
14 33
|
ffvelrnd |
|
35 |
|
2ex |
|
36 |
35
|
tpid3 |
|
37 |
36 24
|
eleqtrri |
|
38 |
37
|
a1i |
|
39 |
21 38
|
ffvelrnd |
|
40 |
14 39
|
ffvelrnd |
|
41 |
34 40
|
remulcld |
|
42 |
28 41
|
remulcld |
|
43 |
12 42
|
fsumrecl |
|
44 |
2
|
nnrpd |
|
45 |
44
|
relogcld |
|
46 |
28 34
|
remulcld |
|
47 |
12 46
|
fsumrecl |
|
48 |
45 47
|
remulcld |
|
49 |
|
fzfi |
|
50 |
|
diffi |
|
51 |
49 50
|
ax-mp |
|
52 |
|
snfi |
|
53 |
|
unfi |
|
54 |
51 52 53
|
mp2an |
|
55 |
54
|
a1i |
|
56 |
13
|
a1i |
|
57 |
|
difss |
|
58 |
57
|
a1i |
|
59 |
|
2nn |
|
60 |
59
|
a1i |
|
61 |
|
elfz1b |
|
62 |
61
|
biimpri |
|
63 |
60 2 3 62
|
syl3anc |
|
64 |
63
|
snssd |
|
65 |
58 64
|
unssd |
|
66 |
|
fz1ssnn |
|
67 |
66
|
a1i |
|
68 |
65 67
|
sstrd |
|
69 |
68
|
sselda |
|
70 |
56 69
|
ffvelrnd |
|
71 |
55 70
|
fsumrecl |
|
72 |
|
fzfid |
|
73 |
13
|
a1i |
|
74 |
67
|
sselda |
|
75 |
73 74
|
ffvelrnd |
|
76 |
72 75
|
fsumrecl |
|
77 |
71 76
|
remulcld |
|
78 |
45 77
|
remulcld |
|
79 |
2
|
adantr |
|
80 |
79
|
nnrpd |
|
81 |
|
relogcl |
|
82 |
80 81
|
syl |
|
83 |
34 82
|
remulcld |
|
84 |
28 83
|
remulcld |
|
85 |
|
vmage0 |
|
86 |
27 85
|
syl |
|
87 |
|
vmage0 |
|
88 |
33 87
|
syl |
|
89 |
39
|
nnrpd |
|
90 |
89
|
relogcld |
|
91 |
|
vmalelog |
|
92 |
39 91
|
syl |
|
93 |
15 17 18 20 38
|
reprle |
|
94 |
|
logleb |
|
95 |
94
|
biimpa |
|
96 |
89 80 93 95
|
syl21anc |
|
97 |
40 90 82 92 96
|
letrd |
|
98 |
40 82 34 88 97
|
lemul2ad |
|
99 |
41 83 28 86 98
|
lemul2ad |
|
100 |
12 42 84 99
|
fsumle |
|
101 |
2
|
nncnd |
|
102 |
2
|
nnne0d |
|
103 |
101 102
|
logcld |
|
104 |
46
|
recnd |
|
105 |
12 103 104
|
fsummulc2 |
|
106 |
103
|
adantr |
|
107 |
106 104
|
mulcomd |
|
108 |
28
|
recnd |
|
109 |
34
|
recnd |
|
110 |
108 109 106
|
mulassd |
|
111 |
107 110
|
eqtrd |
|
112 |
111
|
sumeq2dv |
|
113 |
105 112
|
eqtr2d |
|
114 |
100 113
|
breqtrd |
|
115 |
2
|
nnred |
|
116 |
2
|
nnge1d |
|
117 |
115 116
|
logge0d |
|
118 |
|
xpfi |
|
119 |
55 72 118
|
syl2anc |
|
120 |
13
|
a1i |
|
121 |
68
|
adantr |
|
122 |
|
xp1st |
|
123 |
122
|
adantl |
|
124 |
121 123
|
sseldd |
|
125 |
120 124
|
ffvelrnd |
|
126 |
|
xp2nd |
|
127 |
126
|
adantl |
|
128 |
66 127
|
sselid |
|
129 |
120 128
|
ffvelrnd |
|
130 |
125 129
|
remulcld |
|
131 |
|
vmage0 |
|
132 |
124 131
|
syl |
|
133 |
|
vmage0 |
|
134 |
128 133
|
syl |
|
135 |
125 129 132 134
|
mulge0d |
|
136 |
|
ssidd |
|
137 |
16
|
adantr |
|
138 |
6
|
a1i |
|
139 |
|
simpr |
|
140 |
10 139
|
sselid |
|
141 |
136 137 138 140
|
reprf |
|
142 |
25
|
a1i |
|
143 |
141 142
|
ffvelrnd |
|
144 |
2
|
adantr |
|
145 |
136 137 138 140 142
|
reprle |
|
146 |
|
elfz1b |
|
147 |
146
|
biimpri |
|
148 |
143 144 145 147
|
syl3anc |
|
149 |
4
|
rabeq2i |
|
150 |
149
|
simprbi |
|
151 |
1
|
oddprm2 |
|
152 |
151
|
eleq2i |
|
153 |
150 152
|
sylnibr |
|
154 |
139 153
|
syl |
|
155 |
148 154
|
jca |
|
156 |
|
eldif |
|
157 |
155 156
|
sylibr |
|
158 |
|
uncom |
|
159 |
|
undif3 |
|
160 |
158 159
|
eqtri |
|
161 |
|
ssequn1 |
|
162 |
64 161
|
sylib |
|
163 |
162
|
difeq1d |
|
164 |
160 163
|
eqtrid |
|
165 |
164
|
eleq2d |
|
166 |
165
|
adantr |
|
167 |
157 166
|
mpbird |
|
168 |
31
|
a1i |
|
169 |
141 168
|
ffvelrnd |
|
170 |
136 137 138 140 168
|
reprle |
|
171 |
|
elfz1b |
|
172 |
171
|
biimpri |
|
173 |
169 144 170 172
|
syl3anc |
|
174 |
167 173
|
opelxpd |
|
175 |
174
|
ralrimiva |
|
176 |
|
fveq1 |
|
177 |
|
fveq1 |
|
178 |
176 177
|
opeq12d |
|
179 |
178
|
cbvmptv |
|
180 |
179
|
rnmptss |
|
181 |
175 180
|
syl |
|
182 |
119 130 135 181
|
fsumless |
|
183 |
|
fvex |
|
184 |
|
fvex |
|
185 |
183 184
|
op1std |
|
186 |
185
|
fveq2d |
|
187 |
183 184
|
op2ndd |
|
188 |
187
|
fveq2d |
|
189 |
186 188
|
oveq12d |
|
190 |
|
opex |
|
191 |
190
|
rgenw |
|
192 |
179
|
fnmpt |
|
193 |
191 192
|
mp1i |
|
194 |
|
eqidd |
|
195 |
141
|
ad2antrr |
|
196 |
195
|
ffnd |
|
197 |
21
|
ad4ant13 |
|
198 |
197
|
ffnd |
|
199 |
|
simpr |
|
200 |
179
|
a1i |
|
201 |
190
|
a1i |
|
202 |
200 201
|
fvmpt2d |
|
203 |
202
|
adantr |
|
204 |
203
|
adantr |
|
205 |
|
fveq1 |
|
206 |
|
fveq1 |
|
207 |
205 206
|
opeq12d |
|
208 |
|
opex |
|
209 |
208
|
a1i |
|
210 |
179 207 19 209
|
fvmptd3 |
|
211 |
210
|
adantlr |
|
212 |
211
|
adantr |
|
213 |
199 204 212
|
3eqtr3d |
|
214 |
183 184
|
opth2 |
|
215 |
213 214
|
sylib |
|
216 |
215
|
simpld |
|
217 |
216
|
ad2antrr |
|
218 |
|
simpr |
|
219 |
218
|
fveq2d |
|
220 |
218
|
fveq2d |
|
221 |
217 219 220
|
3eqtr4d |
|
222 |
215
|
simprd |
|
223 |
222
|
ad2antrr |
|
224 |
|
simpr |
|
225 |
224
|
fveq2d |
|
226 |
224
|
fveq2d |
|
227 |
223 225 226
|
3eqtr4d |
|
228 |
216
|
ad2antrr |
|
229 |
222
|
ad2antrr |
|
230 |
228 229
|
oveq12d |
|
231 |
230
|
oveq2d |
|
232 |
24
|
a1i |
|
233 |
232
|
sumeq1d |
|
234 |
|
ssidd |
|
235 |
137
|
ad4antr |
|
236 |
6
|
a1i |
|
237 |
140
|
ad4antr |
|
238 |
234 235 236 237
|
reprsum |
|
239 |
|
fveq2 |
|
240 |
|
fveq2 |
|
241 |
|
fveq2 |
|
242 |
143
|
nncnd |
|
243 |
242
|
ad4antr |
|
244 |
169
|
nncnd |
|
245 |
244
|
ad4antr |
|
246 |
37
|
a1i |
|
247 |
141 246
|
ffvelrnd |
|
248 |
247
|
nncnd |
|
249 |
248
|
ad4antr |
|
250 |
243 245 249
|
3jca |
|
251 |
22 29 35
|
3pm3.2i |
|
252 |
251
|
a1i |
|
253 |
|
0ne1 |
|
254 |
253
|
a1i |
|
255 |
|
0ne2 |
|
256 |
255
|
a1i |
|
257 |
|
1ne2 |
|
258 |
257
|
a1i |
|
259 |
239 240 241 250 252 254 256 258
|
sumtp |
|
260 |
233 238 259
|
3eqtr3rd |
|
261 |
243 245
|
addcld |
|
262 |
101
|
ad5antr |
|
263 |
261 249 262
|
addrsub |
|
264 |
260 263
|
mpbid |
|
265 |
232
|
sumeq1d |
|
266 |
20
|
ad4ant13 |
|
267 |
266
|
ad2antrr |
|
268 |
234 235 236 267
|
reprsum |
|
269 |
|
fveq2 |
|
270 |
|
fveq2 |
|
271 |
|
fveq2 |
|
272 |
27
|
nncnd |
|
273 |
272
|
adantlr |
|
274 |
273
|
ad3antrrr |
|
275 |
33
|
nncnd |
|
276 |
275
|
adantlr |
|
277 |
276
|
ad3antrrr |
|
278 |
39
|
nncnd |
|
279 |
278
|
adantlr |
|
280 |
279
|
ad3antrrr |
|
281 |
274 277 280
|
3jca |
|
282 |
269 270 271 281 252 254 256 258
|
sumtp |
|
283 |
265 268 282
|
3eqtr3rd |
|
284 |
274 277
|
addcld |
|
285 |
284 280 262
|
addrsub |
|
286 |
283 285
|
mpbid |
|
287 |
231 264 286
|
3eqtr4d |
|
288 |
|
simpr |
|
289 |
288
|
fveq2d |
|
290 |
288
|
fveq2d |
|
291 |
287 289 290
|
3eqtr4d |
|
292 |
|
simpr |
|
293 |
292 24
|
eleqtrdi |
|
294 |
|
vex |
|
295 |
294
|
eltp |
|
296 |
293 295
|
sylib |
|
297 |
221 227 291 296
|
mpjao3dan |
|
298 |
196 198 297
|
eqfnfvd |
|
299 |
298
|
ex |
|
300 |
299
|
anasss |
|
301 |
300
|
ralrimivva |
|
302 |
|
dff1o6 |
|
303 |
302
|
biimpri |
|
304 |
193 194 301 303
|
syl3anc |
|
305 |
181
|
sselda |
|
306 |
305 125
|
syldan |
|
307 |
305 129
|
syldan |
|
308 |
306 307
|
remulcld |
|
309 |
308
|
recnd |
|
310 |
189 12 304 210 309
|
fsumf1o |
|
311 |
76
|
recnd |
|
312 |
70
|
recnd |
|
313 |
55 311 312
|
fsummulc1 |
|
314 |
49
|
a1i |
|
315 |
75
|
adantrl |
|
316 |
315
|
anassrs |
|
317 |
316
|
recnd |
|
318 |
314 312 317
|
fsummulc2 |
|
319 |
318
|
sumeq2dv |
|
320 |
|
vex |
|
321 |
294 320
|
op1std |
|
322 |
321
|
fveq2d |
|
323 |
294 320
|
op2ndd |
|
324 |
323
|
fveq2d |
|
325 |
322 324
|
oveq12d |
|
326 |
70
|
adantrr |
|
327 |
326 315
|
remulcld |
|
328 |
327
|
recnd |
|
329 |
325 55 72 328
|
fsumxp |
|
330 |
313 319 329
|
3eqtrrd |
|
331 |
182 310 330
|
3brtr3d |
|
332 |
47 77 45 117 331
|
lemul2ad |
|
333 |
43 48 78 114 332
|
letrd |
|