Metamath Proof Explorer


Theorem hgt750lemb

Description: An upper bound on the contribution of the non-prime terms in the Statement 7.50 of Helfgott p. 69. (Contributed by Thierry Arnoux, 28-Dec-2021)

Ref Expression
Hypotheses hgt750leme.o O = z | ¬ 2 z
hgt750leme.n φ N
hgt750lemb.2 φ 2 N
hgt750lemb.a A = c repr 3 N | ¬ c 0 O
Assertion hgt750lemb φ n A Λ n 0 Λ n 1 Λ n 2 log N i 1 N 2 Λ i j = 1 N Λ j

Proof

Step Hyp Ref Expression
1 hgt750leme.o O = z | ¬ 2 z
2 hgt750leme.n φ N
3 hgt750lemb.2 φ 2 N
4 hgt750lemb.a A = c repr 3 N | ¬ c 0 O
5 2 nnnn0d φ N 0
6 3nn0 3 0
7 6 a1i φ 3 0
8 ssidd φ
9 5 7 8 reprfi2 φ repr 3 N Fin
10 4 ssrab3 A repr 3 N
11 ssfi repr 3 N Fin A repr 3 N A Fin
12 9 10 11 sylancl φ A Fin
13 vmaf Λ :
14 13 a1i φ n A Λ :
15 ssidd φ n A
16 2 nnzd φ N
17 16 adantr φ n A N
18 6 a1i φ n A 3 0
19 simpr φ n A n A
20 10 19 sselid φ n A n repr 3 N
21 15 17 18 20 reprf φ n A n : 0 ..^ 3
22 c0ex 0 V
23 22 tpid1 0 0 1 2
24 fzo0to3tp 0 ..^ 3 = 0 1 2
25 23 24 eleqtrri 0 0 ..^ 3
26 25 a1i φ n A 0 0 ..^ 3
27 21 26 ffvelrnd φ n A n 0
28 14 27 ffvelrnd φ n A Λ n 0
29 1ex 1 V
30 29 tpid2 1 0 1 2
31 30 24 eleqtrri 1 0 ..^ 3
32 31 a1i φ n A 1 0 ..^ 3
33 21 32 ffvelrnd φ n A n 1
34 14 33 ffvelrnd φ n A Λ n 1
35 2ex 2 V
36 35 tpid3 2 0 1 2
37 36 24 eleqtrri 2 0 ..^ 3
38 37 a1i φ n A 2 0 ..^ 3
39 21 38 ffvelrnd φ n A n 2
40 14 39 ffvelrnd φ n A Λ n 2
41 34 40 remulcld φ n A Λ n 1 Λ n 2
42 28 41 remulcld φ n A Λ n 0 Λ n 1 Λ n 2
43 12 42 fsumrecl φ n A Λ n 0 Λ n 1 Λ n 2
44 2 nnrpd φ N +
45 44 relogcld φ log N
46 28 34 remulcld φ n A Λ n 0 Λ n 1
47 12 46 fsumrecl φ n A Λ n 0 Λ n 1
48 45 47 remulcld φ log N n A Λ n 0 Λ n 1
49 fzfi 1 N Fin
50 diffi 1 N Fin 1 N Fin
51 49 50 ax-mp 1 N Fin
52 snfi 2 Fin
53 unfi 1 N Fin 2 Fin 1 N 2 Fin
54 51 52 53 mp2an 1 N 2 Fin
55 54 a1i φ 1 N 2 Fin
56 13 a1i φ i 1 N 2 Λ :
57 difss 1 N 1 N
58 57 a1i φ 1 N 1 N
59 2nn 2
60 59 a1i φ 2
61 elfz1b 2 1 N 2 N 2 N
62 61 biimpri 2 N 2 N 2 1 N
63 60 2 3 62 syl3anc φ 2 1 N
64 63 snssd φ 2 1 N
65 58 64 unssd φ 1 N 2 1 N
66 fz1ssnn 1 N
67 66 a1i φ 1 N
68 65 67 sstrd φ 1 N 2
69 68 sselda φ i 1 N 2 i
70 56 69 ffvelrnd φ i 1 N 2 Λ i
71 55 70 fsumrecl φ i 1 N 2 Λ i
72 fzfid φ 1 N Fin
73 13 a1i φ j 1 N Λ :
74 67 sselda φ j 1 N j
75 73 74 ffvelrnd φ j 1 N Λ j
76 72 75 fsumrecl φ j = 1 N Λ j
77 71 76 remulcld φ i 1 N 2 Λ i j = 1 N Λ j
78 45 77 remulcld φ log N i 1 N 2 Λ i j = 1 N Λ j
79 2 adantr φ n A N
80 79 nnrpd φ n A N +
81 relogcl N + log N
82 80 81 syl φ n A log N
83 34 82 remulcld φ n A Λ n 1 log N
84 28 83 remulcld φ n A Λ n 0 Λ n 1 log N
85 vmage0 n 0 0 Λ n 0
86 27 85 syl φ n A 0 Λ n 0
87 vmage0 n 1 0 Λ n 1
88 33 87 syl φ n A 0 Λ n 1
89 39 nnrpd φ n A n 2 +
90 89 relogcld φ n A log n 2
91 vmalelog n 2 Λ n 2 log n 2
92 39 91 syl φ n A Λ n 2 log n 2
93 15 17 18 20 38 reprle φ n A n 2 N
94 logleb n 2 + N + n 2 N log n 2 log N
95 94 biimpa n 2 + N + n 2 N log n 2 log N
96 89 80 93 95 syl21anc φ n A log n 2 log N
97 40 90 82 92 96 letrd φ n A Λ n 2 log N
98 40 82 34 88 97 lemul2ad φ n A Λ n 1 Λ n 2 Λ n 1 log N
99 41 83 28 86 98 lemul2ad φ n A Λ n 0 Λ n 1 Λ n 2 Λ n 0 Λ n 1 log N
100 12 42 84 99 fsumle φ n A Λ n 0 Λ n 1 Λ n 2 n A Λ n 0 Λ n 1 log N
101 2 nncnd φ N
102 2 nnne0d φ N 0
103 101 102 logcld φ log N
104 46 recnd φ n A Λ n 0 Λ n 1
105 12 103 104 fsummulc2 φ log N n A Λ n 0 Λ n 1 = n A log N Λ n 0 Λ n 1
106 103 adantr φ n A log N
107 106 104 mulcomd φ n A log N Λ n 0 Λ n 1 = Λ n 0 Λ n 1 log N
108 28 recnd φ n A Λ n 0
109 34 recnd φ n A Λ n 1
110 108 109 106 mulassd φ n A Λ n 0 Λ n 1 log N = Λ n 0 Λ n 1 log N
111 107 110 eqtrd φ n A log N Λ n 0 Λ n 1 = Λ n 0 Λ n 1 log N
112 111 sumeq2dv φ n A log N Λ n 0 Λ n 1 = n A Λ n 0 Λ n 1 log N
113 105 112 eqtr2d φ n A Λ n 0 Λ n 1 log N = log N n A Λ n 0 Λ n 1
114 100 113 breqtrd φ n A Λ n 0 Λ n 1 Λ n 2 log N n A Λ n 0 Λ n 1
115 2 nnred φ N
116 2 nnge1d φ 1 N
117 115 116 logge0d φ 0 log N
118 xpfi 1 N 2 Fin 1 N Fin 1 N 2 × 1 N Fin
119 55 72 118 syl2anc φ 1 N 2 × 1 N Fin
120 13 a1i φ u 1 N 2 × 1 N Λ :
121 68 adantr φ u 1 N 2 × 1 N 1 N 2
122 xp1st u 1 N 2 × 1 N 1 st u 1 N 2
123 122 adantl φ u 1 N 2 × 1 N 1 st u 1 N 2
124 121 123 sseldd φ u 1 N 2 × 1 N 1 st u
125 120 124 ffvelrnd φ u 1 N 2 × 1 N Λ 1 st u
126 xp2nd u 1 N 2 × 1 N 2 nd u 1 N
127 126 adantl φ u 1 N 2 × 1 N 2 nd u 1 N
128 66 127 sselid φ u 1 N 2 × 1 N 2 nd u
129 120 128 ffvelrnd φ u 1 N 2 × 1 N Λ 2 nd u
130 125 129 remulcld φ u 1 N 2 × 1 N Λ 1 st u Λ 2 nd u
131 vmage0 1 st u 0 Λ 1 st u
132 124 131 syl φ u 1 N 2 × 1 N 0 Λ 1 st u
133 vmage0 2 nd u 0 Λ 2 nd u
134 128 133 syl φ u 1 N 2 × 1 N 0 Λ 2 nd u
135 125 129 132 134 mulge0d φ u 1 N 2 × 1 N 0 Λ 1 st u Λ 2 nd u
136 ssidd φ c A
137 16 adantr φ c A N
138 6 a1i φ c A 3 0
139 simpr φ c A c A
140 10 139 sselid φ c A c repr 3 N
141 136 137 138 140 reprf φ c A c : 0 ..^ 3
142 25 a1i φ c A 0 0 ..^ 3
143 141 142 ffvelrnd φ c A c 0
144 2 adantr φ c A N
145 136 137 138 140 142 reprle φ c A c 0 N
146 elfz1b c 0 1 N c 0 N c 0 N
147 146 biimpri c 0 N c 0 N c 0 1 N
148 143 144 145 147 syl3anc φ c A c 0 1 N
149 4 rabeq2i c A c repr 3 N ¬ c 0 O
150 149 simprbi c A ¬ c 0 O
151 1 oddprm2 2 = O
152 151 eleq2i c 0 2 c 0 O
153 150 152 sylnibr c A ¬ c 0 2
154 139 153 syl φ c A ¬ c 0 2
155 148 154 jca φ c A c 0 1 N ¬ c 0 2
156 eldif c 0 1 N 2 c 0 1 N ¬ c 0 2
157 155 156 sylibr φ c A c 0 1 N 2
158 uncom 1 N 2 = 2 1 N
159 undif3 2 1 N = 2 1 N 2
160 158 159 eqtri 1 N 2 = 2 1 N 2
161 ssequn1 2 1 N 2 1 N = 1 N
162 64 161 sylib φ 2 1 N = 1 N
163 162 difeq1d φ 2 1 N 2 = 1 N 2
164 160 163 eqtrid φ 1 N 2 = 1 N 2
165 164 eleq2d φ c 0 1 N 2 c 0 1 N 2
166 165 adantr φ c A c 0 1 N 2 c 0 1 N 2
167 157 166 mpbird φ c A c 0 1 N 2
168 31 a1i φ c A 1 0 ..^ 3
169 141 168 ffvelrnd φ c A c 1
170 136 137 138 140 168 reprle φ c A c 1 N
171 elfz1b c 1 1 N c 1 N c 1 N
172 171 biimpri c 1 N c 1 N c 1 1 N
173 169 144 170 172 syl3anc φ c A c 1 1 N
174 167 173 opelxpd φ c A c 0 c 1 1 N 2 × 1 N
175 174 ralrimiva φ c A c 0 c 1 1 N 2 × 1 N
176 fveq1 d = c d 0 = c 0
177 fveq1 d = c d 1 = c 1
178 176 177 opeq12d d = c d 0 d 1 = c 0 c 1
179 178 cbvmptv d A d 0 d 1 = c A c 0 c 1
180 179 rnmptss c A c 0 c 1 1 N 2 × 1 N ran d A d 0 d 1 1 N 2 × 1 N
181 175 180 syl φ ran d A d 0 d 1 1 N 2 × 1 N
182 119 130 135 181 fsumless φ u ran d A d 0 d 1 Λ 1 st u Λ 2 nd u u 1 N 2 × 1 N Λ 1 st u Λ 2 nd u
183 fvex n 0 V
184 fvex n 1 V
185 183 184 op1std u = n 0 n 1 1 st u = n 0
186 185 fveq2d u = n 0 n 1 Λ 1 st u = Λ n 0
187 183 184 op2ndd u = n 0 n 1 2 nd u = n 1
188 187 fveq2d u = n 0 n 1 Λ 2 nd u = Λ n 1
189 186 188 oveq12d u = n 0 n 1 Λ 1 st u Λ 2 nd u = Λ n 0 Λ n 1
190 opex c 0 c 1 V
191 190 rgenw c A c 0 c 1 V
192 179 fnmpt c A c 0 c 1 V d A d 0 d 1 Fn A
193 191 192 mp1i φ d A d 0 d 1 Fn A
194 eqidd φ ran d A d 0 d 1 = ran d A d 0 d 1
195 141 ad2antrr φ c A n A d A d 0 d 1 c = d A d 0 d 1 n c : 0 ..^ 3
196 195 ffnd φ c A n A d A d 0 d 1 c = d A d 0 d 1 n c Fn 0 ..^ 3
197 21 ad4ant13 φ c A n A d A d 0 d 1 c = d A d 0 d 1 n n : 0 ..^ 3
198 197 ffnd φ c A n A d A d 0 d 1 c = d A d 0 d 1 n n Fn 0 ..^ 3
199 simpr φ c A n A d A d 0 d 1 c = d A d 0 d 1 n d A d 0 d 1 c = d A d 0 d 1 n
200 179 a1i φ d A d 0 d 1 = c A c 0 c 1
201 190 a1i φ c A c 0 c 1 V
202 200 201 fvmpt2d φ c A d A d 0 d 1 c = c 0 c 1
203 202 adantr φ c A n A d A d 0 d 1 c = c 0 c 1
204 203 adantr φ c A n A d A d 0 d 1 c = d A d 0 d 1 n d A d 0 d 1 c = c 0 c 1
205 fveq1 c = n c 0 = n 0
206 fveq1 c = n c 1 = n 1
207 205 206 opeq12d c = n c 0 c 1 = n 0 n 1
208 opex n 0 n 1 V
209 208 a1i φ n A n 0 n 1 V
210 179 207 19 209 fvmptd3 φ n A d A d 0 d 1 n = n 0 n 1
211 210 adantlr φ c A n A d A d 0 d 1 n = n 0 n 1
212 211 adantr φ c A n A d A d 0 d 1 c = d A d 0 d 1 n d A d 0 d 1 n = n 0 n 1
213 199 204 212 3eqtr3d φ c A n A d A d 0 d 1 c = d A d 0 d 1 n c 0 c 1 = n 0 n 1
214 183 184 opth2 c 0 c 1 = n 0 n 1 c 0 = n 0 c 1 = n 1
215 213 214 sylib φ c A n A d A d 0 d 1 c = d A d 0 d 1 n c 0 = n 0 c 1 = n 1
216 215 simpld φ c A n A d A d 0 d 1 c = d A d 0 d 1 n c 0 = n 0
217 216 ad2antrr φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 0 c 0 = n 0
218 simpr φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 0 i = 0
219 218 fveq2d φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 0 c i = c 0
220 218 fveq2d φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 0 n i = n 0
221 217 219 220 3eqtr4d φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 0 c i = n i
222 215 simprd φ c A n A d A d 0 d 1 c = d A d 0 d 1 n c 1 = n 1
223 222 ad2antrr φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 1 c 1 = n 1
224 simpr φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 1 i = 1
225 224 fveq2d φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 1 c i = c 1
226 224 fveq2d φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 1 n i = n 1
227 223 225 226 3eqtr4d φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 1 c i = n i
228 216 ad2antrr φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 c 0 = n 0
229 222 ad2antrr φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 c 1 = n 1
230 228 229 oveq12d φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 c 0 + c 1 = n 0 + n 1
231 230 oveq2d φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 N c 0 + c 1 = N n 0 + n 1
232 24 a1i φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 0 ..^ 3 = 0 1 2
233 232 sumeq1d φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 j 0 ..^ 3 c j = j 0 1 2 c j
234 ssidd φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2
235 137 ad4antr φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 N
236 6 a1i φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 3 0
237 140 ad4antr φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 c repr 3 N
238 234 235 236 237 reprsum φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 j 0 ..^ 3 c j = N
239 fveq2 j = 0 c j = c 0
240 fveq2 j = 1 c j = c 1
241 fveq2 j = 2 c j = c 2
242 143 nncnd φ c A c 0
243 242 ad4antr φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 c 0
244 169 nncnd φ c A c 1
245 244 ad4antr φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 c 1
246 37 a1i φ c A 2 0 ..^ 3
247 141 246 ffvelrnd φ c A c 2
248 247 nncnd φ c A c 2
249 248 ad4antr φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 c 2
250 243 245 249 3jca φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 c 0 c 1 c 2
251 22 29 35 3pm3.2i 0 V 1 V 2 V
252 251 a1i φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 0 V 1 V 2 V
253 0ne1 0 1
254 253 a1i φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 0 1
255 0ne2 0 2
256 255 a1i φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 0 2
257 1ne2 1 2
258 257 a1i φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 1 2
259 239 240 241 250 252 254 256 258 sumtp φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 j 0 1 2 c j = c 0 + c 1 + c 2
260 233 238 259 3eqtr3rd φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 c 0 + c 1 + c 2 = N
261 243 245 addcld φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 c 0 + c 1
262 101 ad5antr φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 N
263 261 249 262 addrsub φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 c 0 + c 1 + c 2 = N c 2 = N c 0 + c 1
264 260 263 mpbid φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 c 2 = N c 0 + c 1
265 232 sumeq1d φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 j 0 ..^ 3 n j = j 0 1 2 n j
266 20 ad4ant13 φ c A n A d A d 0 d 1 c = d A d 0 d 1 n n repr 3 N
267 266 ad2antrr φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 n repr 3 N
268 234 235 236 267 reprsum φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 j 0 ..^ 3 n j = N
269 fveq2 j = 0 n j = n 0
270 fveq2 j = 1 n j = n 1
271 fveq2 j = 2 n j = n 2
272 27 nncnd φ n A n 0
273 272 adantlr φ c A n A n 0
274 273 ad3antrrr φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 n 0
275 33 nncnd φ n A n 1
276 275 adantlr φ c A n A n 1
277 276 ad3antrrr φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 n 1
278 39 nncnd φ n A n 2
279 278 adantlr φ c A n A n 2
280 279 ad3antrrr φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 n 2
281 274 277 280 3jca φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 n 0 n 1 n 2
282 269 270 271 281 252 254 256 258 sumtp φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 j 0 1 2 n j = n 0 + n 1 + n 2
283 265 268 282 3eqtr3rd φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 n 0 + n 1 + n 2 = N
284 274 277 addcld φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 n 0 + n 1
285 284 280 262 addrsub φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 n 0 + n 1 + n 2 = N n 2 = N n 0 + n 1
286 283 285 mpbid φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 n 2 = N n 0 + n 1
287 231 264 286 3eqtr4d φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 c 2 = n 2
288 simpr φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 i = 2
289 288 fveq2d φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 c i = c 2
290 288 fveq2d φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 n i = n 2
291 287 289 290 3eqtr4d φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 2 c i = n i
292 simpr φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i 0 ..^ 3
293 292 24 eleqtrdi φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i 0 1 2
294 vex i V
295 294 eltp i 0 1 2 i = 0 i = 1 i = 2
296 293 295 sylib φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 i = 0 i = 1 i = 2
297 221 227 291 296 mpjao3dan φ c A n A d A d 0 d 1 c = d A d 0 d 1 n i 0 ..^ 3 c i = n i
298 196 198 297 eqfnfvd φ c A n A d A d 0 d 1 c = d A d 0 d 1 n c = n
299 298 ex φ c A n A d A d 0 d 1 c = d A d 0 d 1 n c = n
300 299 anasss φ c A n A d A d 0 d 1 c = d A d 0 d 1 n c = n
301 300 ralrimivva φ c A n A d A d 0 d 1 c = d A d 0 d 1 n c = n
302 dff1o6 d A d 0 d 1 : A 1-1 onto ran d A d 0 d 1 d A d 0 d 1 Fn A ran d A d 0 d 1 = ran d A d 0 d 1 c A n A d A d 0 d 1 c = d A d 0 d 1 n c = n
303 302 biimpri d A d 0 d 1 Fn A ran d A d 0 d 1 = ran d A d 0 d 1 c A n A d A d 0 d 1 c = d A d 0 d 1 n c = n d A d 0 d 1 : A 1-1 onto ran d A d 0 d 1
304 193 194 301 303 syl3anc φ d A d 0 d 1 : A 1-1 onto ran d A d 0 d 1
305 181 sselda φ u ran d A d 0 d 1 u 1 N 2 × 1 N
306 305 125 syldan φ u ran d A d 0 d 1 Λ 1 st u
307 305 129 syldan φ u ran d A d 0 d 1 Λ 2 nd u
308 306 307 remulcld φ u ran d A d 0 d 1 Λ 1 st u Λ 2 nd u
309 308 recnd φ u ran d A d 0 d 1 Λ 1 st u Λ 2 nd u
310 189 12 304 210 309 fsumf1o φ u ran d A d 0 d 1 Λ 1 st u Λ 2 nd u = n A Λ n 0 Λ n 1
311 76 recnd φ j = 1 N Λ j
312 70 recnd φ i 1 N 2 Λ i
313 55 311 312 fsummulc1 φ i 1 N 2 Λ i j = 1 N Λ j = i 1 N 2 Λ i j = 1 N Λ j
314 49 a1i φ i 1 N 2 1 N Fin
315 75 adantrl φ i 1 N 2 j 1 N Λ j
316 315 anassrs φ i 1 N 2 j 1 N Λ j
317 316 recnd φ i 1 N 2 j 1 N Λ j
318 314 312 317 fsummulc2 φ i 1 N 2 Λ i j = 1 N Λ j = j = 1 N Λ i Λ j
319 318 sumeq2dv φ i 1 N 2 Λ i j = 1 N Λ j = i 1 N 2 j = 1 N Λ i Λ j
320 vex j V
321 294 320 op1std u = i j 1 st u = i
322 321 fveq2d u = i j Λ 1 st u = Λ i
323 294 320 op2ndd u = i j 2 nd u = j
324 323 fveq2d u = i j Λ 2 nd u = Λ j
325 322 324 oveq12d u = i j Λ 1 st u Λ 2 nd u = Λ i Λ j
326 70 adantrr φ i 1 N 2 j 1 N Λ i
327 326 315 remulcld φ i 1 N 2 j 1 N Λ i Λ j
328 327 recnd φ i 1 N 2 j 1 N Λ i Λ j
329 325 55 72 328 fsumxp φ i 1 N 2 j = 1 N Λ i Λ j = u 1 N 2 × 1 N Λ 1 st u Λ 2 nd u
330 313 319 329 3eqtrrd φ u 1 N 2 × 1 N Λ 1 st u Λ 2 nd u = i 1 N 2 Λ i j = 1 N Λ j
331 182 310 330 3brtr3d φ n A Λ n 0 Λ n 1 i 1 N 2 Λ i j = 1 N Λ j
332 47 77 45 117 331 lemul2ad φ log N n A Λ n 0 Λ n 1 log N i 1 N 2 Λ i j = 1 N Λ j
333 43 48 78 114 332 letrd φ n A Λ n 0 Λ n 1 Λ n 2 log N i 1 N 2 Λ i j = 1 N Λ j