| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgt750leme.o | ⊢ 𝑂  =  { 𝑧  ∈  ℤ  ∣  ¬  2  ∥  𝑧 } | 
						
							| 2 |  | hgt750leme.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 3 |  | hgt750lemb.2 | ⊢ ( 𝜑  →  2  ≤  𝑁 ) | 
						
							| 4 |  | hgt750lemb.a | ⊢ 𝐴  =  { 𝑐  ∈  ( ℕ ( repr ‘ 3 ) 𝑁 )  ∣  ¬  ( 𝑐 ‘ 0 )  ∈  ( 𝑂  ∩  ℙ ) } | 
						
							| 5 | 2 | nnnn0d | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 6 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 7 | 6 | a1i | ⊢ ( 𝜑  →  3  ∈  ℕ0 ) | 
						
							| 8 |  | ssidd | ⊢ ( 𝜑  →  ℕ  ⊆  ℕ ) | 
						
							| 9 | 5 7 8 | reprfi2 | ⊢ ( 𝜑  →  ( ℕ ( repr ‘ 3 ) 𝑁 )  ∈  Fin ) | 
						
							| 10 | 4 | ssrab3 | ⊢ 𝐴  ⊆  ( ℕ ( repr ‘ 3 ) 𝑁 ) | 
						
							| 11 |  | ssfi | ⊢ ( ( ( ℕ ( repr ‘ 3 ) 𝑁 )  ∈  Fin  ∧  𝐴  ⊆  ( ℕ ( repr ‘ 3 ) 𝑁 ) )  →  𝐴  ∈  Fin ) | 
						
							| 12 | 9 10 11 | sylancl | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 13 |  | vmaf | ⊢ Λ : ℕ ⟶ ℝ | 
						
							| 14 | 13 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  Λ : ℕ ⟶ ℝ ) | 
						
							| 15 |  | ssidd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ℕ  ⊆  ℕ ) | 
						
							| 16 | 2 | nnzd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  𝑁  ∈  ℤ ) | 
						
							| 18 | 6 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  3  ∈  ℕ0 ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  𝑛  ∈  𝐴 ) | 
						
							| 20 | 10 19 | sselid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  𝑛  ∈  ( ℕ ( repr ‘ 3 ) 𝑁 ) ) | 
						
							| 21 | 15 17 18 20 | reprf | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  𝑛 : ( 0 ..^ 3 ) ⟶ ℕ ) | 
						
							| 22 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 23 | 22 | tpid1 | ⊢ 0  ∈  { 0 ,  1 ,  2 } | 
						
							| 24 |  | fzo0to3tp | ⊢ ( 0 ..^ 3 )  =  { 0 ,  1 ,  2 } | 
						
							| 25 | 23 24 | eleqtrri | ⊢ 0  ∈  ( 0 ..^ 3 ) | 
						
							| 26 | 25 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  0  ∈  ( 0 ..^ 3 ) ) | 
						
							| 27 | 21 26 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( 𝑛 ‘ 0 )  ∈  ℕ ) | 
						
							| 28 | 14 27 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( Λ ‘ ( 𝑛 ‘ 0 ) )  ∈  ℝ ) | 
						
							| 29 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 30 | 29 | tpid2 | ⊢ 1  ∈  { 0 ,  1 ,  2 } | 
						
							| 31 | 30 24 | eleqtrri | ⊢ 1  ∈  ( 0 ..^ 3 ) | 
						
							| 32 | 31 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  1  ∈  ( 0 ..^ 3 ) ) | 
						
							| 33 | 21 32 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( 𝑛 ‘ 1 )  ∈  ℕ ) | 
						
							| 34 | 14 33 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( Λ ‘ ( 𝑛 ‘ 1 ) )  ∈  ℝ ) | 
						
							| 35 |  | 2ex | ⊢ 2  ∈  V | 
						
							| 36 | 35 | tpid3 | ⊢ 2  ∈  { 0 ,  1 ,  2 } | 
						
							| 37 | 36 24 | eleqtrri | ⊢ 2  ∈  ( 0 ..^ 3 ) | 
						
							| 38 | 37 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  2  ∈  ( 0 ..^ 3 ) ) | 
						
							| 39 | 21 38 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( 𝑛 ‘ 2 )  ∈  ℕ ) | 
						
							| 40 | 14 39 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( Λ ‘ ( 𝑛 ‘ 2 ) )  ∈  ℝ ) | 
						
							| 41 | 34 40 | remulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 2 ) ) )  ∈  ℝ ) | 
						
							| 42 | 28 41 | remulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) )  ∈  ℝ ) | 
						
							| 43 | 12 42 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑛  ∈  𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) )  ∈  ℝ ) | 
						
							| 44 | 2 | nnrpd | ⊢ ( 𝜑  →  𝑁  ∈  ℝ+ ) | 
						
							| 45 | 44 | relogcld | ⊢ ( 𝜑  →  ( log ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 46 | 28 34 | remulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 1 ) ) )  ∈  ℝ ) | 
						
							| 47 | 12 46 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑛  ∈  𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 1 ) ) )  ∈  ℝ ) | 
						
							| 48 | 45 47 | remulcld | ⊢ ( 𝜑  →  ( ( log ‘ 𝑁 )  ·  Σ 𝑛  ∈  𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) )  ∈  ℝ ) | 
						
							| 49 |  | fzfi | ⊢ ( 1 ... 𝑁 )  ∈  Fin | 
						
							| 50 |  | diffi | ⊢ ( ( 1 ... 𝑁 )  ∈  Fin  →  ( ( 1 ... 𝑁 )  ∖  ℙ )  ∈  Fin ) | 
						
							| 51 | 49 50 | ax-mp | ⊢ ( ( 1 ... 𝑁 )  ∖  ℙ )  ∈  Fin | 
						
							| 52 |  | snfi | ⊢ { 2 }  ∈  Fin | 
						
							| 53 |  | unfi | ⊢ ( ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∈  Fin  ∧  { 2 }  ∈  Fin )  →  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ∈  Fin ) | 
						
							| 54 | 51 52 53 | mp2an | ⊢ ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ∈  Fin | 
						
							| 55 | 54 | a1i | ⊢ ( 𝜑  →  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ∈  Fin ) | 
						
							| 56 | 13 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } ) )  →  Λ : ℕ ⟶ ℝ ) | 
						
							| 57 |  | difss | ⊢ ( ( 1 ... 𝑁 )  ∖  ℙ )  ⊆  ( 1 ... 𝑁 ) | 
						
							| 58 | 57 | a1i | ⊢ ( 𝜑  →  ( ( 1 ... 𝑁 )  ∖  ℙ )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 59 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 60 | 59 | a1i | ⊢ ( 𝜑  →  2  ∈  ℕ ) | 
						
							| 61 |  | elfz1b | ⊢ ( 2  ∈  ( 1 ... 𝑁 )  ↔  ( 2  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  2  ≤  𝑁 ) ) | 
						
							| 62 | 61 | biimpri | ⊢ ( ( 2  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  2  ≤  𝑁 )  →  2  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 63 | 60 2 3 62 | syl3anc | ⊢ ( 𝜑  →  2  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 64 | 63 | snssd | ⊢ ( 𝜑  →  { 2 }  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 65 | 58 64 | unssd | ⊢ ( 𝜑  →  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 66 |  | fz1ssnn | ⊢ ( 1 ... 𝑁 )  ⊆  ℕ | 
						
							| 67 | 66 | a1i | ⊢ ( 𝜑  →  ( 1 ... 𝑁 )  ⊆  ℕ ) | 
						
							| 68 | 65 67 | sstrd | ⊢ ( 𝜑  →  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ⊆  ℕ ) | 
						
							| 69 | 68 | sselda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } ) )  →  𝑖  ∈  ℕ ) | 
						
							| 70 | 56 69 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } ) )  →  ( Λ ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 71 | 55 70 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑖  ∈  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } ) ( Λ ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 72 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... 𝑁 )  ∈  Fin ) | 
						
							| 73 | 13 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  Λ : ℕ ⟶ ℝ ) | 
						
							| 74 | 67 | sselda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝑗  ∈  ℕ ) | 
						
							| 75 | 73 74 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( Λ ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 76 | 72 75 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 77 | 71 76 | remulcld | ⊢ ( 𝜑  →  ( Σ 𝑖  ∈  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } ) ( Λ ‘ 𝑖 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) )  ∈  ℝ ) | 
						
							| 78 | 45 77 | remulcld | ⊢ ( 𝜑  →  ( ( log ‘ 𝑁 )  ·  ( Σ 𝑖  ∈  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } ) ( Λ ‘ 𝑖 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) )  ∈  ℝ ) | 
						
							| 79 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  𝑁  ∈  ℕ ) | 
						
							| 80 | 79 | nnrpd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  𝑁  ∈  ℝ+ ) | 
						
							| 81 |  | relogcl | ⊢ ( 𝑁  ∈  ℝ+  →  ( log ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 82 | 80 81 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( log ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 83 | 34 82 | remulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( log ‘ 𝑁 ) )  ∈  ℝ ) | 
						
							| 84 | 28 83 | remulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( log ‘ 𝑁 ) ) )  ∈  ℝ ) | 
						
							| 85 |  | vmage0 | ⊢ ( ( 𝑛 ‘ 0 )  ∈  ℕ  →  0  ≤  ( Λ ‘ ( 𝑛 ‘ 0 ) ) ) | 
						
							| 86 | 27 85 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  0  ≤  ( Λ ‘ ( 𝑛 ‘ 0 ) ) ) | 
						
							| 87 |  | vmage0 | ⊢ ( ( 𝑛 ‘ 1 )  ∈  ℕ  →  0  ≤  ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) | 
						
							| 88 | 33 87 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  0  ≤  ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) | 
						
							| 89 | 39 | nnrpd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( 𝑛 ‘ 2 )  ∈  ℝ+ ) | 
						
							| 90 | 89 | relogcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( log ‘ ( 𝑛 ‘ 2 ) )  ∈  ℝ ) | 
						
							| 91 |  | vmalelog | ⊢ ( ( 𝑛 ‘ 2 )  ∈  ℕ  →  ( Λ ‘ ( 𝑛 ‘ 2 ) )  ≤  ( log ‘ ( 𝑛 ‘ 2 ) ) ) | 
						
							| 92 | 39 91 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( Λ ‘ ( 𝑛 ‘ 2 ) )  ≤  ( log ‘ ( 𝑛 ‘ 2 ) ) ) | 
						
							| 93 | 15 17 18 20 38 | reprle | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( 𝑛 ‘ 2 )  ≤  𝑁 ) | 
						
							| 94 |  | logleb | ⊢ ( ( ( 𝑛 ‘ 2 )  ∈  ℝ+  ∧  𝑁  ∈  ℝ+ )  →  ( ( 𝑛 ‘ 2 )  ≤  𝑁  ↔  ( log ‘ ( 𝑛 ‘ 2 ) )  ≤  ( log ‘ 𝑁 ) ) ) | 
						
							| 95 | 94 | biimpa | ⊢ ( ( ( ( 𝑛 ‘ 2 )  ∈  ℝ+  ∧  𝑁  ∈  ℝ+ )  ∧  ( 𝑛 ‘ 2 )  ≤  𝑁 )  →  ( log ‘ ( 𝑛 ‘ 2 ) )  ≤  ( log ‘ 𝑁 ) ) | 
						
							| 96 | 89 80 93 95 | syl21anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( log ‘ ( 𝑛 ‘ 2 ) )  ≤  ( log ‘ 𝑁 ) ) | 
						
							| 97 | 40 90 82 92 96 | letrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( Λ ‘ ( 𝑛 ‘ 2 ) )  ≤  ( log ‘ 𝑁 ) ) | 
						
							| 98 | 40 82 34 88 97 | lemul2ad | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 2 ) ) )  ≤  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( log ‘ 𝑁 ) ) ) | 
						
							| 99 | 41 83 28 86 98 | lemul2ad | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) )  ≤  ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( log ‘ 𝑁 ) ) ) ) | 
						
							| 100 | 12 42 84 99 | fsumle | ⊢ ( 𝜑  →  Σ 𝑛  ∈  𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) )  ≤  Σ 𝑛  ∈  𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( log ‘ 𝑁 ) ) ) ) | 
						
							| 101 | 2 | nncnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 102 | 2 | nnne0d | ⊢ ( 𝜑  →  𝑁  ≠  0 ) | 
						
							| 103 | 101 102 | logcld | ⊢ ( 𝜑  →  ( log ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 104 | 46 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 1 ) ) )  ∈  ℂ ) | 
						
							| 105 | 12 103 104 | fsummulc2 | ⊢ ( 𝜑  →  ( ( log ‘ 𝑁 )  ·  Σ 𝑛  ∈  𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) )  =  Σ 𝑛  ∈  𝐴 ( ( log ‘ 𝑁 )  ·  ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) ) | 
						
							| 106 | 103 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( log ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 107 | 106 104 | mulcomd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( log ‘ 𝑁 )  ·  ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) )  =  ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 1 ) ) )  ·  ( log ‘ 𝑁 ) ) ) | 
						
							| 108 | 28 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( Λ ‘ ( 𝑛 ‘ 0 ) )  ∈  ℂ ) | 
						
							| 109 | 34 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( Λ ‘ ( 𝑛 ‘ 1 ) )  ∈  ℂ ) | 
						
							| 110 | 108 109 106 | mulassd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 1 ) ) )  ·  ( log ‘ 𝑁 ) )  =  ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( log ‘ 𝑁 ) ) ) ) | 
						
							| 111 | 107 110 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( log ‘ 𝑁 )  ·  ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) )  =  ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( log ‘ 𝑁 ) ) ) ) | 
						
							| 112 | 111 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑛  ∈  𝐴 ( ( log ‘ 𝑁 )  ·  ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) )  =  Σ 𝑛  ∈  𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( log ‘ 𝑁 ) ) ) ) | 
						
							| 113 | 105 112 | eqtr2d | ⊢ ( 𝜑  →  Σ 𝑛  ∈  𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( log ‘ 𝑁 ) ) )  =  ( ( log ‘ 𝑁 )  ·  Σ 𝑛  ∈  𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) ) | 
						
							| 114 | 100 113 | breqtrd | ⊢ ( 𝜑  →  Σ 𝑛  ∈  𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) )  ≤  ( ( log ‘ 𝑁 )  ·  Σ 𝑛  ∈  𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) ) | 
						
							| 115 | 2 | nnred | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 116 | 2 | nnge1d | ⊢ ( 𝜑  →  1  ≤  𝑁 ) | 
						
							| 117 | 115 116 | logge0d | ⊢ ( 𝜑  →  0  ≤  ( log ‘ 𝑁 ) ) | 
						
							| 118 |  | xpfi | ⊢ ( ( ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ∈  Fin  ∧  ( 1 ... 𝑁 )  ∈  Fin )  →  ( ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ×  ( 1 ... 𝑁 ) )  ∈  Fin ) | 
						
							| 119 | 55 72 118 | syl2anc | ⊢ ( 𝜑  →  ( ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ×  ( 1 ... 𝑁 ) )  ∈  Fin ) | 
						
							| 120 | 13 | a1i | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ×  ( 1 ... 𝑁 ) ) )  →  Λ : ℕ ⟶ ℝ ) | 
						
							| 121 | 68 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ×  ( 1 ... 𝑁 ) ) )  →  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ⊆  ℕ ) | 
						
							| 122 |  | xp1st | ⊢ ( 𝑢  ∈  ( ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ×  ( 1 ... 𝑁 ) )  →  ( 1st  ‘ 𝑢 )  ∈  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } ) ) | 
						
							| 123 | 122 | adantl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ×  ( 1 ... 𝑁 ) ) )  →  ( 1st  ‘ 𝑢 )  ∈  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } ) ) | 
						
							| 124 | 121 123 | sseldd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ×  ( 1 ... 𝑁 ) ) )  →  ( 1st  ‘ 𝑢 )  ∈  ℕ ) | 
						
							| 125 | 120 124 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ×  ( 1 ... 𝑁 ) ) )  →  ( Λ ‘ ( 1st  ‘ 𝑢 ) )  ∈  ℝ ) | 
						
							| 126 |  | xp2nd | ⊢ ( 𝑢  ∈  ( ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ×  ( 1 ... 𝑁 ) )  →  ( 2nd  ‘ 𝑢 )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 127 | 126 | adantl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ×  ( 1 ... 𝑁 ) ) )  →  ( 2nd  ‘ 𝑢 )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 128 | 66 127 | sselid | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ×  ( 1 ... 𝑁 ) ) )  →  ( 2nd  ‘ 𝑢 )  ∈  ℕ ) | 
						
							| 129 | 120 128 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ×  ( 1 ... 𝑁 ) ) )  →  ( Λ ‘ ( 2nd  ‘ 𝑢 ) )  ∈  ℝ ) | 
						
							| 130 | 125 129 | remulcld | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ×  ( 1 ... 𝑁 ) ) )  →  ( ( Λ ‘ ( 1st  ‘ 𝑢 ) )  ·  ( Λ ‘ ( 2nd  ‘ 𝑢 ) ) )  ∈  ℝ ) | 
						
							| 131 |  | vmage0 | ⊢ ( ( 1st  ‘ 𝑢 )  ∈  ℕ  →  0  ≤  ( Λ ‘ ( 1st  ‘ 𝑢 ) ) ) | 
						
							| 132 | 124 131 | syl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ×  ( 1 ... 𝑁 ) ) )  →  0  ≤  ( Λ ‘ ( 1st  ‘ 𝑢 ) ) ) | 
						
							| 133 |  | vmage0 | ⊢ ( ( 2nd  ‘ 𝑢 )  ∈  ℕ  →  0  ≤  ( Λ ‘ ( 2nd  ‘ 𝑢 ) ) ) | 
						
							| 134 | 128 133 | syl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ×  ( 1 ... 𝑁 ) ) )  →  0  ≤  ( Λ ‘ ( 2nd  ‘ 𝑢 ) ) ) | 
						
							| 135 | 125 129 132 134 | mulge0d | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ×  ( 1 ... 𝑁 ) ) )  →  0  ≤  ( ( Λ ‘ ( 1st  ‘ 𝑢 ) )  ·  ( Λ ‘ ( 2nd  ‘ 𝑢 ) ) ) ) | 
						
							| 136 |  | ssidd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  →  ℕ  ⊆  ℕ ) | 
						
							| 137 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  →  𝑁  ∈  ℤ ) | 
						
							| 138 | 6 | a1i | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  →  3  ∈  ℕ0 ) | 
						
							| 139 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  →  𝑐  ∈  𝐴 ) | 
						
							| 140 | 10 139 | sselid | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  →  𝑐  ∈  ( ℕ ( repr ‘ 3 ) 𝑁 ) ) | 
						
							| 141 | 136 137 138 140 | reprf | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  →  𝑐 : ( 0 ..^ 3 ) ⟶ ℕ ) | 
						
							| 142 | 25 | a1i | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  →  0  ∈  ( 0 ..^ 3 ) ) | 
						
							| 143 | 141 142 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  →  ( 𝑐 ‘ 0 )  ∈  ℕ ) | 
						
							| 144 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  →  𝑁  ∈  ℕ ) | 
						
							| 145 | 136 137 138 140 142 | reprle | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  →  ( 𝑐 ‘ 0 )  ≤  𝑁 ) | 
						
							| 146 |  | elfz1b | ⊢ ( ( 𝑐 ‘ 0 )  ∈  ( 1 ... 𝑁 )  ↔  ( ( 𝑐 ‘ 0 )  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  ( 𝑐 ‘ 0 )  ≤  𝑁 ) ) | 
						
							| 147 | 146 | biimpri | ⊢ ( ( ( 𝑐 ‘ 0 )  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  ( 𝑐 ‘ 0 )  ≤  𝑁 )  →  ( 𝑐 ‘ 0 )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 148 | 143 144 145 147 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  →  ( 𝑐 ‘ 0 )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 149 | 4 | reqabi | ⊢ ( 𝑐  ∈  𝐴  ↔  ( 𝑐  ∈  ( ℕ ( repr ‘ 3 ) 𝑁 )  ∧  ¬  ( 𝑐 ‘ 0 )  ∈  ( 𝑂  ∩  ℙ ) ) ) | 
						
							| 150 | 149 | simprbi | ⊢ ( 𝑐  ∈  𝐴  →  ¬  ( 𝑐 ‘ 0 )  ∈  ( 𝑂  ∩  ℙ ) ) | 
						
							| 151 | 1 | oddprm2 | ⊢ ( ℙ  ∖  { 2 } )  =  ( 𝑂  ∩  ℙ ) | 
						
							| 152 | 151 | eleq2i | ⊢ ( ( 𝑐 ‘ 0 )  ∈  ( ℙ  ∖  { 2 } )  ↔  ( 𝑐 ‘ 0 )  ∈  ( 𝑂  ∩  ℙ ) ) | 
						
							| 153 | 150 152 | sylnibr | ⊢ ( 𝑐  ∈  𝐴  →  ¬  ( 𝑐 ‘ 0 )  ∈  ( ℙ  ∖  { 2 } ) ) | 
						
							| 154 | 139 153 | syl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  →  ¬  ( 𝑐 ‘ 0 )  ∈  ( ℙ  ∖  { 2 } ) ) | 
						
							| 155 | 148 154 | jca | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  →  ( ( 𝑐 ‘ 0 )  ∈  ( 1 ... 𝑁 )  ∧  ¬  ( 𝑐 ‘ 0 )  ∈  ( ℙ  ∖  { 2 } ) ) ) | 
						
							| 156 |  | eldif | ⊢ ( ( 𝑐 ‘ 0 )  ∈  ( ( 1 ... 𝑁 )  ∖  ( ℙ  ∖  { 2 } ) )  ↔  ( ( 𝑐 ‘ 0 )  ∈  ( 1 ... 𝑁 )  ∧  ¬  ( 𝑐 ‘ 0 )  ∈  ( ℙ  ∖  { 2 } ) ) ) | 
						
							| 157 | 155 156 | sylibr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  →  ( 𝑐 ‘ 0 )  ∈  ( ( 1 ... 𝑁 )  ∖  ( ℙ  ∖  { 2 } ) ) ) | 
						
							| 158 |  | uncom | ⊢ ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  =  ( { 2 }  ∪  ( ( 1 ... 𝑁 )  ∖  ℙ ) ) | 
						
							| 159 |  | undif3 | ⊢ ( { 2 }  ∪  ( ( 1 ... 𝑁 )  ∖  ℙ ) )  =  ( ( { 2 }  ∪  ( 1 ... 𝑁 ) )  ∖  ( ℙ  ∖  { 2 } ) ) | 
						
							| 160 | 158 159 | eqtri | ⊢ ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  =  ( ( { 2 }  ∪  ( 1 ... 𝑁 ) )  ∖  ( ℙ  ∖  { 2 } ) ) | 
						
							| 161 |  | ssequn1 | ⊢ ( { 2 }  ⊆  ( 1 ... 𝑁 )  ↔  ( { 2 }  ∪  ( 1 ... 𝑁 ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 162 | 64 161 | sylib | ⊢ ( 𝜑  →  ( { 2 }  ∪  ( 1 ... 𝑁 ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 163 | 162 | difeq1d | ⊢ ( 𝜑  →  ( ( { 2 }  ∪  ( 1 ... 𝑁 ) )  ∖  ( ℙ  ∖  { 2 } ) )  =  ( ( 1 ... 𝑁 )  ∖  ( ℙ  ∖  { 2 } ) ) ) | 
						
							| 164 | 160 163 | eqtrid | ⊢ ( 𝜑  →  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  =  ( ( 1 ... 𝑁 )  ∖  ( ℙ  ∖  { 2 } ) ) ) | 
						
							| 165 | 164 | eleq2d | ⊢ ( 𝜑  →  ( ( 𝑐 ‘ 0 )  ∈  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ↔  ( 𝑐 ‘ 0 )  ∈  ( ( 1 ... 𝑁 )  ∖  ( ℙ  ∖  { 2 } ) ) ) ) | 
						
							| 166 | 165 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  →  ( ( 𝑐 ‘ 0 )  ∈  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ↔  ( 𝑐 ‘ 0 )  ∈  ( ( 1 ... 𝑁 )  ∖  ( ℙ  ∖  { 2 } ) ) ) ) | 
						
							| 167 | 157 166 | mpbird | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  →  ( 𝑐 ‘ 0 )  ∈  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } ) ) | 
						
							| 168 | 31 | a1i | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  →  1  ∈  ( 0 ..^ 3 ) ) | 
						
							| 169 | 141 168 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  →  ( 𝑐 ‘ 1 )  ∈  ℕ ) | 
						
							| 170 | 136 137 138 140 168 | reprle | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  →  ( 𝑐 ‘ 1 )  ≤  𝑁 ) | 
						
							| 171 |  | elfz1b | ⊢ ( ( 𝑐 ‘ 1 )  ∈  ( 1 ... 𝑁 )  ↔  ( ( 𝑐 ‘ 1 )  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  ( 𝑐 ‘ 1 )  ≤  𝑁 ) ) | 
						
							| 172 | 171 | biimpri | ⊢ ( ( ( 𝑐 ‘ 1 )  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  ( 𝑐 ‘ 1 )  ≤  𝑁 )  →  ( 𝑐 ‘ 1 )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 173 | 169 144 170 172 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  →  ( 𝑐 ‘ 1 )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 174 | 167 173 | opelxpd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  →  〈 ( 𝑐 ‘ 0 ) ,  ( 𝑐 ‘ 1 ) 〉  ∈  ( ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ×  ( 1 ... 𝑁 ) ) ) | 
						
							| 175 | 174 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑐  ∈  𝐴 〈 ( 𝑐 ‘ 0 ) ,  ( 𝑐 ‘ 1 ) 〉  ∈  ( ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ×  ( 1 ... 𝑁 ) ) ) | 
						
							| 176 |  | fveq1 | ⊢ ( 𝑑  =  𝑐  →  ( 𝑑 ‘ 0 )  =  ( 𝑐 ‘ 0 ) ) | 
						
							| 177 |  | fveq1 | ⊢ ( 𝑑  =  𝑐  →  ( 𝑑 ‘ 1 )  =  ( 𝑐 ‘ 1 ) ) | 
						
							| 178 | 176 177 | opeq12d | ⊢ ( 𝑑  =  𝑐  →  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉  =  〈 ( 𝑐 ‘ 0 ) ,  ( 𝑐 ‘ 1 ) 〉 ) | 
						
							| 179 | 178 | cbvmptv | ⊢ ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 )  =  ( 𝑐  ∈  𝐴  ↦  〈 ( 𝑐 ‘ 0 ) ,  ( 𝑐 ‘ 1 ) 〉 ) | 
						
							| 180 | 179 | rnmptss | ⊢ ( ∀ 𝑐  ∈  𝐴 〈 ( 𝑐 ‘ 0 ) ,  ( 𝑐 ‘ 1 ) 〉  ∈  ( ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ×  ( 1 ... 𝑁 ) )  →  ran  ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 )  ⊆  ( ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ×  ( 1 ... 𝑁 ) ) ) | 
						
							| 181 | 175 180 | syl | ⊢ ( 𝜑  →  ran  ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 )  ⊆  ( ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ×  ( 1 ... 𝑁 ) ) ) | 
						
							| 182 | 119 130 135 181 | fsumless | ⊢ ( 𝜑  →  Σ 𝑢  ∈  ran  ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ( ( Λ ‘ ( 1st  ‘ 𝑢 ) )  ·  ( Λ ‘ ( 2nd  ‘ 𝑢 ) ) )  ≤  Σ 𝑢  ∈  ( ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ×  ( 1 ... 𝑁 ) ) ( ( Λ ‘ ( 1st  ‘ 𝑢 ) )  ·  ( Λ ‘ ( 2nd  ‘ 𝑢 ) ) ) ) | 
						
							| 183 |  | fvex | ⊢ ( 𝑛 ‘ 0 )  ∈  V | 
						
							| 184 |  | fvex | ⊢ ( 𝑛 ‘ 1 )  ∈  V | 
						
							| 185 | 183 184 | op1std | ⊢ ( 𝑢  =  〈 ( 𝑛 ‘ 0 ) ,  ( 𝑛 ‘ 1 ) 〉  →  ( 1st  ‘ 𝑢 )  =  ( 𝑛 ‘ 0 ) ) | 
						
							| 186 | 185 | fveq2d | ⊢ ( 𝑢  =  〈 ( 𝑛 ‘ 0 ) ,  ( 𝑛 ‘ 1 ) 〉  →  ( Λ ‘ ( 1st  ‘ 𝑢 ) )  =  ( Λ ‘ ( 𝑛 ‘ 0 ) ) ) | 
						
							| 187 | 183 184 | op2ndd | ⊢ ( 𝑢  =  〈 ( 𝑛 ‘ 0 ) ,  ( 𝑛 ‘ 1 ) 〉  →  ( 2nd  ‘ 𝑢 )  =  ( 𝑛 ‘ 1 ) ) | 
						
							| 188 | 187 | fveq2d | ⊢ ( 𝑢  =  〈 ( 𝑛 ‘ 0 ) ,  ( 𝑛 ‘ 1 ) 〉  →  ( Λ ‘ ( 2nd  ‘ 𝑢 ) )  =  ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) | 
						
							| 189 | 186 188 | oveq12d | ⊢ ( 𝑢  =  〈 ( 𝑛 ‘ 0 ) ,  ( 𝑛 ‘ 1 ) 〉  →  ( ( Λ ‘ ( 1st  ‘ 𝑢 ) )  ·  ( Λ ‘ ( 2nd  ‘ 𝑢 ) ) )  =  ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) | 
						
							| 190 |  | opex | ⊢ 〈 ( 𝑐 ‘ 0 ) ,  ( 𝑐 ‘ 1 ) 〉  ∈  V | 
						
							| 191 | 190 | rgenw | ⊢ ∀ 𝑐  ∈  𝐴 〈 ( 𝑐 ‘ 0 ) ,  ( 𝑐 ‘ 1 ) 〉  ∈  V | 
						
							| 192 | 179 | fnmpt | ⊢ ( ∀ 𝑐  ∈  𝐴 〈 ( 𝑐 ‘ 0 ) ,  ( 𝑐 ‘ 1 ) 〉  ∈  V  →  ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 )  Fn  𝐴 ) | 
						
							| 193 | 191 192 | mp1i | ⊢ ( 𝜑  →  ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 )  Fn  𝐴 ) | 
						
							| 194 |  | eqidd | ⊢ ( 𝜑  →  ran  ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 )  =  ran  ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ) | 
						
							| 195 | 141 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  →  𝑐 : ( 0 ..^ 3 ) ⟶ ℕ ) | 
						
							| 196 | 195 | ffnd | ⊢ ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  →  𝑐  Fn  ( 0 ..^ 3 ) ) | 
						
							| 197 | 21 | ad4ant13 | ⊢ ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  →  𝑛 : ( 0 ..^ 3 ) ⟶ ℕ ) | 
						
							| 198 | 197 | ffnd | ⊢ ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  →  𝑛  Fn  ( 0 ..^ 3 ) ) | 
						
							| 199 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  →  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) ) | 
						
							| 200 | 179 | a1i | ⊢ ( 𝜑  →  ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 )  =  ( 𝑐  ∈  𝐴  ↦  〈 ( 𝑐 ‘ 0 ) ,  ( 𝑐 ‘ 1 ) 〉 ) ) | 
						
							| 201 | 190 | a1i | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  →  〈 ( 𝑐 ‘ 0 ) ,  ( 𝑐 ‘ 1 ) 〉  ∈  V ) | 
						
							| 202 | 200 201 | fvmpt2d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  →  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  〈 ( 𝑐 ‘ 0 ) ,  ( 𝑐 ‘ 1 ) 〉 ) | 
						
							| 203 | 202 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  →  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  〈 ( 𝑐 ‘ 0 ) ,  ( 𝑐 ‘ 1 ) 〉 ) | 
						
							| 204 | 203 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  →  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  〈 ( 𝑐 ‘ 0 ) ,  ( 𝑐 ‘ 1 ) 〉 ) | 
						
							| 205 |  | fveq1 | ⊢ ( 𝑐  =  𝑛  →  ( 𝑐 ‘ 0 )  =  ( 𝑛 ‘ 0 ) ) | 
						
							| 206 |  | fveq1 | ⊢ ( 𝑐  =  𝑛  →  ( 𝑐 ‘ 1 )  =  ( 𝑛 ‘ 1 ) ) | 
						
							| 207 | 205 206 | opeq12d | ⊢ ( 𝑐  =  𝑛  →  〈 ( 𝑐 ‘ 0 ) ,  ( 𝑐 ‘ 1 ) 〉  =  〈 ( 𝑛 ‘ 0 ) ,  ( 𝑛 ‘ 1 ) 〉 ) | 
						
							| 208 |  | opex | ⊢ 〈 ( 𝑛 ‘ 0 ) ,  ( 𝑛 ‘ 1 ) 〉  ∈  V | 
						
							| 209 | 208 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  〈 ( 𝑛 ‘ 0 ) ,  ( 𝑛 ‘ 1 ) 〉  ∈  V ) | 
						
							| 210 | 179 207 19 209 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 )  =  〈 ( 𝑛 ‘ 0 ) ,  ( 𝑛 ‘ 1 ) 〉 ) | 
						
							| 211 | 210 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  →  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 )  =  〈 ( 𝑛 ‘ 0 ) ,  ( 𝑛 ‘ 1 ) 〉 ) | 
						
							| 212 | 211 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  →  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 )  =  〈 ( 𝑛 ‘ 0 ) ,  ( 𝑛 ‘ 1 ) 〉 ) | 
						
							| 213 | 199 204 212 | 3eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  →  〈 ( 𝑐 ‘ 0 ) ,  ( 𝑐 ‘ 1 ) 〉  =  〈 ( 𝑛 ‘ 0 ) ,  ( 𝑛 ‘ 1 ) 〉 ) | 
						
							| 214 | 183 184 | opth2 | ⊢ ( 〈 ( 𝑐 ‘ 0 ) ,  ( 𝑐 ‘ 1 ) 〉  =  〈 ( 𝑛 ‘ 0 ) ,  ( 𝑛 ‘ 1 ) 〉  ↔  ( ( 𝑐 ‘ 0 )  =  ( 𝑛 ‘ 0 )  ∧  ( 𝑐 ‘ 1 )  =  ( 𝑛 ‘ 1 ) ) ) | 
						
							| 215 | 213 214 | sylib | ⊢ ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  →  ( ( 𝑐 ‘ 0 )  =  ( 𝑛 ‘ 0 )  ∧  ( 𝑐 ‘ 1 )  =  ( 𝑛 ‘ 1 ) ) ) | 
						
							| 216 | 215 | simpld | ⊢ ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  →  ( 𝑐 ‘ 0 )  =  ( 𝑛 ‘ 0 ) ) | 
						
							| 217 | 216 | ad2antrr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  0 )  →  ( 𝑐 ‘ 0 )  =  ( 𝑛 ‘ 0 ) ) | 
						
							| 218 |  | simpr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  0 )  →  𝑖  =  0 ) | 
						
							| 219 | 218 | fveq2d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  0 )  →  ( 𝑐 ‘ 𝑖 )  =  ( 𝑐 ‘ 0 ) ) | 
						
							| 220 | 218 | fveq2d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  0 )  →  ( 𝑛 ‘ 𝑖 )  =  ( 𝑛 ‘ 0 ) ) | 
						
							| 221 | 217 219 220 | 3eqtr4d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  0 )  →  ( 𝑐 ‘ 𝑖 )  =  ( 𝑛 ‘ 𝑖 ) ) | 
						
							| 222 | 215 | simprd | ⊢ ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  →  ( 𝑐 ‘ 1 )  =  ( 𝑛 ‘ 1 ) ) | 
						
							| 223 | 222 | ad2antrr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  1 )  →  ( 𝑐 ‘ 1 )  =  ( 𝑛 ‘ 1 ) ) | 
						
							| 224 |  | simpr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  1 )  →  𝑖  =  1 ) | 
						
							| 225 | 224 | fveq2d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  1 )  →  ( 𝑐 ‘ 𝑖 )  =  ( 𝑐 ‘ 1 ) ) | 
						
							| 226 | 224 | fveq2d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  1 )  →  ( 𝑛 ‘ 𝑖 )  =  ( 𝑛 ‘ 1 ) ) | 
						
							| 227 | 223 225 226 | 3eqtr4d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  1 )  →  ( 𝑐 ‘ 𝑖 )  =  ( 𝑛 ‘ 𝑖 ) ) | 
						
							| 228 | 216 | ad2antrr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  ( 𝑐 ‘ 0 )  =  ( 𝑛 ‘ 0 ) ) | 
						
							| 229 | 222 | ad2antrr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  ( 𝑐 ‘ 1 )  =  ( 𝑛 ‘ 1 ) ) | 
						
							| 230 | 228 229 | oveq12d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  ( ( 𝑐 ‘ 0 )  +  ( 𝑐 ‘ 1 ) )  =  ( ( 𝑛 ‘ 0 )  +  ( 𝑛 ‘ 1 ) ) ) | 
						
							| 231 | 230 | oveq2d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  ( 𝑁  −  ( ( 𝑐 ‘ 0 )  +  ( 𝑐 ‘ 1 ) ) )  =  ( 𝑁  −  ( ( 𝑛 ‘ 0 )  +  ( 𝑛 ‘ 1 ) ) ) ) | 
						
							| 232 | 24 | a1i | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  ( 0 ..^ 3 )  =  { 0 ,  1 ,  2 } ) | 
						
							| 233 | 232 | sumeq1d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  Σ 𝑗  ∈  ( 0 ..^ 3 ) ( 𝑐 ‘ 𝑗 )  =  Σ 𝑗  ∈  { 0 ,  1 ,  2 } ( 𝑐 ‘ 𝑗 ) ) | 
						
							| 234 |  | ssidd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  ℕ  ⊆  ℕ ) | 
						
							| 235 | 137 | ad4antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  𝑁  ∈  ℤ ) | 
						
							| 236 | 6 | a1i | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  3  ∈  ℕ0 ) | 
						
							| 237 | 140 | ad4antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  𝑐  ∈  ( ℕ ( repr ‘ 3 ) 𝑁 ) ) | 
						
							| 238 | 234 235 236 237 | reprsum | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  Σ 𝑗  ∈  ( 0 ..^ 3 ) ( 𝑐 ‘ 𝑗 )  =  𝑁 ) | 
						
							| 239 |  | fveq2 | ⊢ ( 𝑗  =  0  →  ( 𝑐 ‘ 𝑗 )  =  ( 𝑐 ‘ 0 ) ) | 
						
							| 240 |  | fveq2 | ⊢ ( 𝑗  =  1  →  ( 𝑐 ‘ 𝑗 )  =  ( 𝑐 ‘ 1 ) ) | 
						
							| 241 |  | fveq2 | ⊢ ( 𝑗  =  2  →  ( 𝑐 ‘ 𝑗 )  =  ( 𝑐 ‘ 2 ) ) | 
						
							| 242 | 143 | nncnd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  →  ( 𝑐 ‘ 0 )  ∈  ℂ ) | 
						
							| 243 | 242 | ad4antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  ( 𝑐 ‘ 0 )  ∈  ℂ ) | 
						
							| 244 | 169 | nncnd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  →  ( 𝑐 ‘ 1 )  ∈  ℂ ) | 
						
							| 245 | 244 | ad4antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  ( 𝑐 ‘ 1 )  ∈  ℂ ) | 
						
							| 246 | 37 | a1i | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  →  2  ∈  ( 0 ..^ 3 ) ) | 
						
							| 247 | 141 246 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  →  ( 𝑐 ‘ 2 )  ∈  ℕ ) | 
						
							| 248 | 247 | nncnd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  →  ( 𝑐 ‘ 2 )  ∈  ℂ ) | 
						
							| 249 | 248 | ad4antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  ( 𝑐 ‘ 2 )  ∈  ℂ ) | 
						
							| 250 | 243 245 249 | 3jca | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  ( ( 𝑐 ‘ 0 )  ∈  ℂ  ∧  ( 𝑐 ‘ 1 )  ∈  ℂ  ∧  ( 𝑐 ‘ 2 )  ∈  ℂ ) ) | 
						
							| 251 | 22 29 35 | 3pm3.2i | ⊢ ( 0  ∈  V  ∧  1  ∈  V  ∧  2  ∈  V ) | 
						
							| 252 | 251 | a1i | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  ( 0  ∈  V  ∧  1  ∈  V  ∧  2  ∈  V ) ) | 
						
							| 253 |  | 0ne1 | ⊢ 0  ≠  1 | 
						
							| 254 | 253 | a1i | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  0  ≠  1 ) | 
						
							| 255 |  | 0ne2 | ⊢ 0  ≠  2 | 
						
							| 256 | 255 | a1i | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  0  ≠  2 ) | 
						
							| 257 |  | 1ne2 | ⊢ 1  ≠  2 | 
						
							| 258 | 257 | a1i | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  1  ≠  2 ) | 
						
							| 259 | 239 240 241 250 252 254 256 258 | sumtp | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  Σ 𝑗  ∈  { 0 ,  1 ,  2 } ( 𝑐 ‘ 𝑗 )  =  ( ( ( 𝑐 ‘ 0 )  +  ( 𝑐 ‘ 1 ) )  +  ( 𝑐 ‘ 2 ) ) ) | 
						
							| 260 | 233 238 259 | 3eqtr3rd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  ( ( ( 𝑐 ‘ 0 )  +  ( 𝑐 ‘ 1 ) )  +  ( 𝑐 ‘ 2 ) )  =  𝑁 ) | 
						
							| 261 | 243 245 | addcld | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  ( ( 𝑐 ‘ 0 )  +  ( 𝑐 ‘ 1 ) )  ∈  ℂ ) | 
						
							| 262 | 101 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  𝑁  ∈  ℂ ) | 
						
							| 263 | 261 249 262 | addrsub | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  ( ( ( ( 𝑐 ‘ 0 )  +  ( 𝑐 ‘ 1 ) )  +  ( 𝑐 ‘ 2 ) )  =  𝑁  ↔  ( 𝑐 ‘ 2 )  =  ( 𝑁  −  ( ( 𝑐 ‘ 0 )  +  ( 𝑐 ‘ 1 ) ) ) ) ) | 
						
							| 264 | 260 263 | mpbid | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  ( 𝑐 ‘ 2 )  =  ( 𝑁  −  ( ( 𝑐 ‘ 0 )  +  ( 𝑐 ‘ 1 ) ) ) ) | 
						
							| 265 | 232 | sumeq1d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  Σ 𝑗  ∈  ( 0 ..^ 3 ) ( 𝑛 ‘ 𝑗 )  =  Σ 𝑗  ∈  { 0 ,  1 ,  2 } ( 𝑛 ‘ 𝑗 ) ) | 
						
							| 266 | 20 | ad4ant13 | ⊢ ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  →  𝑛  ∈  ( ℕ ( repr ‘ 3 ) 𝑁 ) ) | 
						
							| 267 | 266 | ad2antrr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  𝑛  ∈  ( ℕ ( repr ‘ 3 ) 𝑁 ) ) | 
						
							| 268 | 234 235 236 267 | reprsum | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  Σ 𝑗  ∈  ( 0 ..^ 3 ) ( 𝑛 ‘ 𝑗 )  =  𝑁 ) | 
						
							| 269 |  | fveq2 | ⊢ ( 𝑗  =  0  →  ( 𝑛 ‘ 𝑗 )  =  ( 𝑛 ‘ 0 ) ) | 
						
							| 270 |  | fveq2 | ⊢ ( 𝑗  =  1  →  ( 𝑛 ‘ 𝑗 )  =  ( 𝑛 ‘ 1 ) ) | 
						
							| 271 |  | fveq2 | ⊢ ( 𝑗  =  2  →  ( 𝑛 ‘ 𝑗 )  =  ( 𝑛 ‘ 2 ) ) | 
						
							| 272 | 27 | nncnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( 𝑛 ‘ 0 )  ∈  ℂ ) | 
						
							| 273 | 272 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  →  ( 𝑛 ‘ 0 )  ∈  ℂ ) | 
						
							| 274 | 273 | ad3antrrr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  ( 𝑛 ‘ 0 )  ∈  ℂ ) | 
						
							| 275 | 33 | nncnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( 𝑛 ‘ 1 )  ∈  ℂ ) | 
						
							| 276 | 275 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  →  ( 𝑛 ‘ 1 )  ∈  ℂ ) | 
						
							| 277 | 276 | ad3antrrr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  ( 𝑛 ‘ 1 )  ∈  ℂ ) | 
						
							| 278 | 39 | nncnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐴 )  →  ( 𝑛 ‘ 2 )  ∈  ℂ ) | 
						
							| 279 | 278 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  →  ( 𝑛 ‘ 2 )  ∈  ℂ ) | 
						
							| 280 | 279 | ad3antrrr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  ( 𝑛 ‘ 2 )  ∈  ℂ ) | 
						
							| 281 | 274 277 280 | 3jca | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  ( ( 𝑛 ‘ 0 )  ∈  ℂ  ∧  ( 𝑛 ‘ 1 )  ∈  ℂ  ∧  ( 𝑛 ‘ 2 )  ∈  ℂ ) ) | 
						
							| 282 | 269 270 271 281 252 254 256 258 | sumtp | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  Σ 𝑗  ∈  { 0 ,  1 ,  2 } ( 𝑛 ‘ 𝑗 )  =  ( ( ( 𝑛 ‘ 0 )  +  ( 𝑛 ‘ 1 ) )  +  ( 𝑛 ‘ 2 ) ) ) | 
						
							| 283 | 265 268 282 | 3eqtr3rd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  ( ( ( 𝑛 ‘ 0 )  +  ( 𝑛 ‘ 1 ) )  +  ( 𝑛 ‘ 2 ) )  =  𝑁 ) | 
						
							| 284 | 274 277 | addcld | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  ( ( 𝑛 ‘ 0 )  +  ( 𝑛 ‘ 1 ) )  ∈  ℂ ) | 
						
							| 285 | 284 280 262 | addrsub | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  ( ( ( ( 𝑛 ‘ 0 )  +  ( 𝑛 ‘ 1 ) )  +  ( 𝑛 ‘ 2 ) )  =  𝑁  ↔  ( 𝑛 ‘ 2 )  =  ( 𝑁  −  ( ( 𝑛 ‘ 0 )  +  ( 𝑛 ‘ 1 ) ) ) ) ) | 
						
							| 286 | 283 285 | mpbid | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  ( 𝑛 ‘ 2 )  =  ( 𝑁  −  ( ( 𝑛 ‘ 0 )  +  ( 𝑛 ‘ 1 ) ) ) ) | 
						
							| 287 | 231 264 286 | 3eqtr4d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  ( 𝑐 ‘ 2 )  =  ( 𝑛 ‘ 2 ) ) | 
						
							| 288 |  | simpr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  𝑖  =  2 ) | 
						
							| 289 | 288 | fveq2d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  ( 𝑐 ‘ 𝑖 )  =  ( 𝑐 ‘ 2 ) ) | 
						
							| 290 | 288 | fveq2d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  ( 𝑛 ‘ 𝑖 )  =  ( 𝑛 ‘ 2 ) ) | 
						
							| 291 | 287 289 290 | 3eqtr4d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  ∧  𝑖  =  2 )  →  ( 𝑐 ‘ 𝑖 )  =  ( 𝑛 ‘ 𝑖 ) ) | 
						
							| 292 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  →  𝑖  ∈  ( 0 ..^ 3 ) ) | 
						
							| 293 | 292 24 | eleqtrdi | ⊢ ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  →  𝑖  ∈  { 0 ,  1 ,  2 } ) | 
						
							| 294 |  | vex | ⊢ 𝑖  ∈  V | 
						
							| 295 | 294 | eltp | ⊢ ( 𝑖  ∈  { 0 ,  1 ,  2 }  ↔  ( 𝑖  =  0  ∨  𝑖  =  1  ∨  𝑖  =  2 ) ) | 
						
							| 296 | 293 295 | sylib | ⊢ ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  →  ( 𝑖  =  0  ∨  𝑖  =  1  ∨  𝑖  =  2 ) ) | 
						
							| 297 | 221 227 291 296 | mpjao3dan | ⊢ ( ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  ∧  𝑖  ∈  ( 0 ..^ 3 ) )  →  ( 𝑐 ‘ 𝑖 )  =  ( 𝑛 ‘ 𝑖 ) ) | 
						
							| 298 | 196 198 297 | eqfnfvd | ⊢ ( ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  ∧  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 ) )  →  𝑐  =  𝑛 ) | 
						
							| 299 | 298 | ex | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  𝐴 )  ∧  𝑛  ∈  𝐴 )  →  ( ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 )  →  𝑐  =  𝑛 ) ) | 
						
							| 300 | 299 | anasss | ⊢ ( ( 𝜑  ∧  ( 𝑐  ∈  𝐴  ∧  𝑛  ∈  𝐴 ) )  →  ( ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 )  →  𝑐  =  𝑛 ) ) | 
						
							| 301 | 300 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑐  ∈  𝐴 ∀ 𝑛  ∈  𝐴 ( ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 )  →  𝑐  =  𝑛 ) ) | 
						
							| 302 |  | dff1o6 | ⊢ ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) : 𝐴 –1-1-onto→ ran  ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 )  ↔  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 )  Fn  𝐴  ∧  ran  ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 )  =  ran  ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 )  ∧  ∀ 𝑐  ∈  𝐴 ∀ 𝑛  ∈  𝐴 ( ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 )  →  𝑐  =  𝑛 ) ) ) | 
						
							| 303 | 302 | biimpri | ⊢ ( ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 )  Fn  𝐴  ∧  ran  ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 )  =  ran  ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 )  ∧  ∀ 𝑐  ∈  𝐴 ∀ 𝑛  ∈  𝐴 ( ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑐 )  =  ( ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ‘ 𝑛 )  →  𝑐  =  𝑛 ) )  →  ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) : 𝐴 –1-1-onto→ ran  ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ) | 
						
							| 304 | 193 194 301 303 | syl3anc | ⊢ ( 𝜑  →  ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) : 𝐴 –1-1-onto→ ran  ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ) | 
						
							| 305 | 181 | sselda | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ran  ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) )  →  𝑢  ∈  ( ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ×  ( 1 ... 𝑁 ) ) ) | 
						
							| 306 | 305 125 | syldan | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ran  ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) )  →  ( Λ ‘ ( 1st  ‘ 𝑢 ) )  ∈  ℝ ) | 
						
							| 307 | 305 129 | syldan | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ran  ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) )  →  ( Λ ‘ ( 2nd  ‘ 𝑢 ) )  ∈  ℝ ) | 
						
							| 308 | 306 307 | remulcld | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ran  ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) )  →  ( ( Λ ‘ ( 1st  ‘ 𝑢 ) )  ·  ( Λ ‘ ( 2nd  ‘ 𝑢 ) ) )  ∈  ℝ ) | 
						
							| 309 | 308 | recnd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ran  ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) )  →  ( ( Λ ‘ ( 1st  ‘ 𝑢 ) )  ·  ( Λ ‘ ( 2nd  ‘ 𝑢 ) ) )  ∈  ℂ ) | 
						
							| 310 | 189 12 304 210 309 | fsumf1o | ⊢ ( 𝜑  →  Σ 𝑢  ∈  ran  ( 𝑑  ∈  𝐴  ↦  〈 ( 𝑑 ‘ 0 ) ,  ( 𝑑 ‘ 1 ) 〉 ) ( ( Λ ‘ ( 1st  ‘ 𝑢 ) )  ·  ( Λ ‘ ( 2nd  ‘ 𝑢 ) ) )  =  Σ 𝑛  ∈  𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) | 
						
							| 311 | 76 | recnd | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 312 | 70 | recnd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } ) )  →  ( Λ ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 313 | 55 311 312 | fsummulc1 | ⊢ ( 𝜑  →  ( Σ 𝑖  ∈  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } ) ( Λ ‘ 𝑖 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) )  =  Σ 𝑖  ∈  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } ) ( ( Λ ‘ 𝑖 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) ) | 
						
							| 314 | 49 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } ) )  →  ( 1 ... 𝑁 )  ∈  Fin ) | 
						
							| 315 | 75 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) ) )  →  ( Λ ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 316 | 315 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } ) )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( Λ ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 317 | 316 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } ) )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( Λ ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 318 | 314 312 317 | fsummulc2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } ) )  →  ( ( Λ ‘ 𝑖 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) )  =  Σ 𝑗  ∈  ( 1 ... 𝑁 ) ( ( Λ ‘ 𝑖 )  ·  ( Λ ‘ 𝑗 ) ) ) | 
						
							| 319 | 318 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑖  ∈  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } ) ( ( Λ ‘ 𝑖 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) )  =  Σ 𝑖  ∈  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } ) Σ 𝑗  ∈  ( 1 ... 𝑁 ) ( ( Λ ‘ 𝑖 )  ·  ( Λ ‘ 𝑗 ) ) ) | 
						
							| 320 |  | vex | ⊢ 𝑗  ∈  V | 
						
							| 321 | 294 320 | op1std | ⊢ ( 𝑢  =  〈 𝑖 ,  𝑗 〉  →  ( 1st  ‘ 𝑢 )  =  𝑖 ) | 
						
							| 322 | 321 | fveq2d | ⊢ ( 𝑢  =  〈 𝑖 ,  𝑗 〉  →  ( Λ ‘ ( 1st  ‘ 𝑢 ) )  =  ( Λ ‘ 𝑖 ) ) | 
						
							| 323 | 294 320 | op2ndd | ⊢ ( 𝑢  =  〈 𝑖 ,  𝑗 〉  →  ( 2nd  ‘ 𝑢 )  =  𝑗 ) | 
						
							| 324 | 323 | fveq2d | ⊢ ( 𝑢  =  〈 𝑖 ,  𝑗 〉  →  ( Λ ‘ ( 2nd  ‘ 𝑢 ) )  =  ( Λ ‘ 𝑗 ) ) | 
						
							| 325 | 322 324 | oveq12d | ⊢ ( 𝑢  =  〈 𝑖 ,  𝑗 〉  →  ( ( Λ ‘ ( 1st  ‘ 𝑢 ) )  ·  ( Λ ‘ ( 2nd  ‘ 𝑢 ) ) )  =  ( ( Λ ‘ 𝑖 )  ·  ( Λ ‘ 𝑗 ) ) ) | 
						
							| 326 | 70 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) ) )  →  ( Λ ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 327 | 326 315 | remulcld | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) ) )  →  ( ( Λ ‘ 𝑖 )  ·  ( Λ ‘ 𝑗 ) )  ∈  ℝ ) | 
						
							| 328 | 327 | recnd | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ∧  𝑗  ∈  ( 1 ... 𝑁 ) ) )  →  ( ( Λ ‘ 𝑖 )  ·  ( Λ ‘ 𝑗 ) )  ∈  ℂ ) | 
						
							| 329 | 325 55 72 328 | fsumxp | ⊢ ( 𝜑  →  Σ 𝑖  ∈  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } ) Σ 𝑗  ∈  ( 1 ... 𝑁 ) ( ( Λ ‘ 𝑖 )  ·  ( Λ ‘ 𝑗 ) )  =  Σ 𝑢  ∈  ( ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ×  ( 1 ... 𝑁 ) ) ( ( Λ ‘ ( 1st  ‘ 𝑢 ) )  ·  ( Λ ‘ ( 2nd  ‘ 𝑢 ) ) ) ) | 
						
							| 330 | 313 319 329 | 3eqtrrd | ⊢ ( 𝜑  →  Σ 𝑢  ∈  ( ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } )  ×  ( 1 ... 𝑁 ) ) ( ( Λ ‘ ( 1st  ‘ 𝑢 ) )  ·  ( Λ ‘ ( 2nd  ‘ 𝑢 ) ) )  =  ( Σ 𝑖  ∈  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } ) ( Λ ‘ 𝑖 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) ) | 
						
							| 331 | 182 310 330 | 3brtr3d | ⊢ ( 𝜑  →  Σ 𝑛  ∈  𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 1 ) ) )  ≤  ( Σ 𝑖  ∈  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } ) ( Λ ‘ 𝑖 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) ) | 
						
							| 332 | 47 77 45 117 331 | lemul2ad | ⊢ ( 𝜑  →  ( ( log ‘ 𝑁 )  ·  Σ 𝑛  ∈  𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) )  ≤  ( ( log ‘ 𝑁 )  ·  ( Σ 𝑖  ∈  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } ) ( Λ ‘ 𝑖 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) ) ) | 
						
							| 333 | 43 48 78 114 332 | letrd | ⊢ ( 𝜑  →  Σ 𝑛  ∈  𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) )  ·  ( ( Λ ‘ ( 𝑛 ‘ 1 ) )  ·  ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) )  ≤  ( ( log ‘ 𝑁 )  ·  ( Σ 𝑖  ∈  ( ( ( 1 ... 𝑁 )  ∖  ℙ )  ∪  { 2 } ) ( Λ ‘ 𝑖 )  ·  Σ 𝑗  ∈  ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) ) ) |