Metamath Proof Explorer


Theorem hgt750lemb

Description: An upper bound on the contribution of the non-prime terms in the Statement 7.50 of Helfgott p. 69. (Contributed by Thierry Arnoux, 28-Dec-2021)

Ref Expression
Hypotheses hgt750leme.o 𝑂 = { 𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧 }
hgt750leme.n ( 𝜑𝑁 ∈ ℕ )
hgt750lemb.2 ( 𝜑 → 2 ≤ 𝑁 )
hgt750lemb.a 𝐴 = { 𝑐 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ∣ ¬ ( 𝑐 ‘ 0 ) ∈ ( 𝑂 ∩ ℙ ) }
Assertion hgt750lemb ( 𝜑 → Σ 𝑛𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ≤ ( ( log ‘ 𝑁 ) · ( Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ( Λ ‘ 𝑖 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) ) )

Proof

Step Hyp Ref Expression
1 hgt750leme.o 𝑂 = { 𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧 }
2 hgt750leme.n ( 𝜑𝑁 ∈ ℕ )
3 hgt750lemb.2 ( 𝜑 → 2 ≤ 𝑁 )
4 hgt750lemb.a 𝐴 = { 𝑐 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ∣ ¬ ( 𝑐 ‘ 0 ) ∈ ( 𝑂 ∩ ℙ ) }
5 2 nnnn0d ( 𝜑𝑁 ∈ ℕ0 )
6 3nn0 3 ∈ ℕ0
7 6 a1i ( 𝜑 → 3 ∈ ℕ0 )
8 ssidd ( 𝜑 → ℕ ⊆ ℕ )
9 5 7 8 reprfi2 ( 𝜑 → ( ℕ ( repr ‘ 3 ) 𝑁 ) ∈ Fin )
10 4 ssrab3 𝐴 ⊆ ( ℕ ( repr ‘ 3 ) 𝑁 )
11 ssfi ( ( ( ℕ ( repr ‘ 3 ) 𝑁 ) ∈ Fin ∧ 𝐴 ⊆ ( ℕ ( repr ‘ 3 ) 𝑁 ) ) → 𝐴 ∈ Fin )
12 9 10 11 sylancl ( 𝜑𝐴 ∈ Fin )
13 vmaf Λ : ℕ ⟶ ℝ
14 13 a1i ( ( 𝜑𝑛𝐴 ) → Λ : ℕ ⟶ ℝ )
15 ssidd ( ( 𝜑𝑛𝐴 ) → ℕ ⊆ ℕ )
16 2 nnzd ( 𝜑𝑁 ∈ ℤ )
17 16 adantr ( ( 𝜑𝑛𝐴 ) → 𝑁 ∈ ℤ )
18 6 a1i ( ( 𝜑𝑛𝐴 ) → 3 ∈ ℕ0 )
19 simpr ( ( 𝜑𝑛𝐴 ) → 𝑛𝐴 )
20 10 19 sseldi ( ( 𝜑𝑛𝐴 ) → 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) )
21 15 17 18 20 reprf ( ( 𝜑𝑛𝐴 ) → 𝑛 : ( 0 ..^ 3 ) ⟶ ℕ )
22 c0ex 0 ∈ V
23 22 tpid1 0 ∈ { 0 , 1 , 2 }
24 fzo0to3tp ( 0 ..^ 3 ) = { 0 , 1 , 2 }
25 23 24 eleqtrri 0 ∈ ( 0 ..^ 3 )
26 25 a1i ( ( 𝜑𝑛𝐴 ) → 0 ∈ ( 0 ..^ 3 ) )
27 21 26 ffvelrnd ( ( 𝜑𝑛𝐴 ) → ( 𝑛 ‘ 0 ) ∈ ℕ )
28 14 27 ffvelrnd ( ( 𝜑𝑛𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 0 ) ) ∈ ℝ )
29 1ex 1 ∈ V
30 29 tpid2 1 ∈ { 0 , 1 , 2 }
31 30 24 eleqtrri 1 ∈ ( 0 ..^ 3 )
32 31 a1i ( ( 𝜑𝑛𝐴 ) → 1 ∈ ( 0 ..^ 3 ) )
33 21 32 ffvelrnd ( ( 𝜑𝑛𝐴 ) → ( 𝑛 ‘ 1 ) ∈ ℕ )
34 14 33 ffvelrnd ( ( 𝜑𝑛𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 1 ) ) ∈ ℝ )
35 2ex 2 ∈ V
36 35 tpid3 2 ∈ { 0 , 1 , 2 }
37 36 24 eleqtrri 2 ∈ ( 0 ..^ 3 )
38 37 a1i ( ( 𝜑𝑛𝐴 ) → 2 ∈ ( 0 ..^ 3 ) )
39 21 38 ffvelrnd ( ( 𝜑𝑛𝐴 ) → ( 𝑛 ‘ 2 ) ∈ ℕ )
40 14 39 ffvelrnd ( ( 𝜑𝑛𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 2 ) ) ∈ ℝ )
41 34 40 remulcld ( ( 𝜑𝑛𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ∈ ℝ )
42 28 41 remulcld ( ( 𝜑𝑛𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ∈ ℝ )
43 12 42 fsumrecl ( 𝜑 → Σ 𝑛𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ∈ ℝ )
44 2 nnrpd ( 𝜑𝑁 ∈ ℝ+ )
45 44 relogcld ( 𝜑 → ( log ‘ 𝑁 ) ∈ ℝ )
46 28 34 remulcld ( ( 𝜑𝑛𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ∈ ℝ )
47 12 46 fsumrecl ( 𝜑 → Σ 𝑛𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ∈ ℝ )
48 45 47 remulcld ( 𝜑 → ( ( log ‘ 𝑁 ) · Σ 𝑛𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) ∈ ℝ )
49 fzfi ( 1 ... 𝑁 ) ∈ Fin
50 diffi ( ( 1 ... 𝑁 ) ∈ Fin → ( ( 1 ... 𝑁 ) ∖ ℙ ) ∈ Fin )
51 49 50 ax-mp ( ( 1 ... 𝑁 ) ∖ ℙ ) ∈ Fin
52 snfi { 2 } ∈ Fin
53 unfi ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∈ Fin ∧ { 2 } ∈ Fin ) → ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ∈ Fin )
54 51 52 53 mp2an ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ∈ Fin
55 54 a1i ( 𝜑 → ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ∈ Fin )
56 13 a1i ( ( 𝜑𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ) → Λ : ℕ ⟶ ℝ )
57 difss ( ( 1 ... 𝑁 ) ∖ ℙ ) ⊆ ( 1 ... 𝑁 )
58 57 a1i ( 𝜑 → ( ( 1 ... 𝑁 ) ∖ ℙ ) ⊆ ( 1 ... 𝑁 ) )
59 2nn 2 ∈ ℕ
60 59 a1i ( 𝜑 → 2 ∈ ℕ )
61 elfz1b ( 2 ∈ ( 1 ... 𝑁 ) ↔ ( 2 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 2 ≤ 𝑁 ) )
62 61 biimpri ( ( 2 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 2 ≤ 𝑁 ) → 2 ∈ ( 1 ... 𝑁 ) )
63 60 2 3 62 syl3anc ( 𝜑 → 2 ∈ ( 1 ... 𝑁 ) )
64 63 snssd ( 𝜑 → { 2 } ⊆ ( 1 ... 𝑁 ) )
65 58 64 unssd ( 𝜑 → ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ⊆ ( 1 ... 𝑁 ) )
66 fz1ssnn ( 1 ... 𝑁 ) ⊆ ℕ
67 66 a1i ( 𝜑 → ( 1 ... 𝑁 ) ⊆ ℕ )
68 65 67 sstrd ( 𝜑 → ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ⊆ ℕ )
69 68 sselda ( ( 𝜑𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ) → 𝑖 ∈ ℕ )
70 56 69 ffvelrnd ( ( 𝜑𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ) → ( Λ ‘ 𝑖 ) ∈ ℝ )
71 55 70 fsumrecl ( 𝜑 → Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ( Λ ‘ 𝑖 ) ∈ ℝ )
72 fzfid ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin )
73 13 a1i ( ( 𝜑𝑗 ∈ ( 1 ... 𝑁 ) ) → Λ : ℕ ⟶ ℝ )
74 67 sselda ( ( 𝜑𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑗 ∈ ℕ )
75 73 74 ffvelrnd ( ( 𝜑𝑗 ∈ ( 1 ... 𝑁 ) ) → ( Λ ‘ 𝑗 ) ∈ ℝ )
76 72 75 fsumrecl ( 𝜑 → Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ∈ ℝ )
77 71 76 remulcld ( 𝜑 → ( Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ( Λ ‘ 𝑖 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) ∈ ℝ )
78 45 77 remulcld ( 𝜑 → ( ( log ‘ 𝑁 ) · ( Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ( Λ ‘ 𝑖 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) ) ∈ ℝ )
79 2 adantr ( ( 𝜑𝑛𝐴 ) → 𝑁 ∈ ℕ )
80 79 nnrpd ( ( 𝜑𝑛𝐴 ) → 𝑁 ∈ ℝ+ )
81 relogcl ( 𝑁 ∈ ℝ+ → ( log ‘ 𝑁 ) ∈ ℝ )
82 80 81 syl ( ( 𝜑𝑛𝐴 ) → ( log ‘ 𝑁 ) ∈ ℝ )
83 34 82 remulcld ( ( 𝜑𝑛𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( log ‘ 𝑁 ) ) ∈ ℝ )
84 28 83 remulcld ( ( 𝜑𝑛𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( log ‘ 𝑁 ) ) ) ∈ ℝ )
85 vmage0 ( ( 𝑛 ‘ 0 ) ∈ ℕ → 0 ≤ ( Λ ‘ ( 𝑛 ‘ 0 ) ) )
86 27 85 syl ( ( 𝜑𝑛𝐴 ) → 0 ≤ ( Λ ‘ ( 𝑛 ‘ 0 ) ) )
87 vmage0 ( ( 𝑛 ‘ 1 ) ∈ ℕ → 0 ≤ ( Λ ‘ ( 𝑛 ‘ 1 ) ) )
88 33 87 syl ( ( 𝜑𝑛𝐴 ) → 0 ≤ ( Λ ‘ ( 𝑛 ‘ 1 ) ) )
89 39 nnrpd ( ( 𝜑𝑛𝐴 ) → ( 𝑛 ‘ 2 ) ∈ ℝ+ )
90 89 relogcld ( ( 𝜑𝑛𝐴 ) → ( log ‘ ( 𝑛 ‘ 2 ) ) ∈ ℝ )
91 vmalelog ( ( 𝑛 ‘ 2 ) ∈ ℕ → ( Λ ‘ ( 𝑛 ‘ 2 ) ) ≤ ( log ‘ ( 𝑛 ‘ 2 ) ) )
92 39 91 syl ( ( 𝜑𝑛𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 2 ) ) ≤ ( log ‘ ( 𝑛 ‘ 2 ) ) )
93 15 17 18 20 38 reprle ( ( 𝜑𝑛𝐴 ) → ( 𝑛 ‘ 2 ) ≤ 𝑁 )
94 logleb ( ( ( 𝑛 ‘ 2 ) ∈ ℝ+𝑁 ∈ ℝ+ ) → ( ( 𝑛 ‘ 2 ) ≤ 𝑁 ↔ ( log ‘ ( 𝑛 ‘ 2 ) ) ≤ ( log ‘ 𝑁 ) ) )
95 94 biimpa ( ( ( ( 𝑛 ‘ 2 ) ∈ ℝ+𝑁 ∈ ℝ+ ) ∧ ( 𝑛 ‘ 2 ) ≤ 𝑁 ) → ( log ‘ ( 𝑛 ‘ 2 ) ) ≤ ( log ‘ 𝑁 ) )
96 89 80 93 95 syl21anc ( ( 𝜑𝑛𝐴 ) → ( log ‘ ( 𝑛 ‘ 2 ) ) ≤ ( log ‘ 𝑁 ) )
97 40 90 82 92 96 letrd ( ( 𝜑𝑛𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 2 ) ) ≤ ( log ‘ 𝑁 ) )
98 40 82 34 88 97 lemul2ad ( ( 𝜑𝑛𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ≤ ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( log ‘ 𝑁 ) ) )
99 41 83 28 86 98 lemul2ad ( ( 𝜑𝑛𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ≤ ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( log ‘ 𝑁 ) ) ) )
100 12 42 84 99 fsumle ( 𝜑 → Σ 𝑛𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ≤ Σ 𝑛𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( log ‘ 𝑁 ) ) ) )
101 2 nncnd ( 𝜑𝑁 ∈ ℂ )
102 2 nnne0d ( 𝜑𝑁 ≠ 0 )
103 101 102 logcld ( 𝜑 → ( log ‘ 𝑁 ) ∈ ℂ )
104 46 recnd ( ( 𝜑𝑛𝐴 ) → ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ∈ ℂ )
105 12 103 104 fsummulc2 ( 𝜑 → ( ( log ‘ 𝑁 ) · Σ 𝑛𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) = Σ 𝑛𝐴 ( ( log ‘ 𝑁 ) · ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) )
106 103 adantr ( ( 𝜑𝑛𝐴 ) → ( log ‘ 𝑁 ) ∈ ℂ )
107 106 104 mulcomd ( ( 𝜑𝑛𝐴 ) → ( ( log ‘ 𝑁 ) · ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) = ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) · ( log ‘ 𝑁 ) ) )
108 28 recnd ( ( 𝜑𝑛𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 0 ) ) ∈ ℂ )
109 34 recnd ( ( 𝜑𝑛𝐴 ) → ( Λ ‘ ( 𝑛 ‘ 1 ) ) ∈ ℂ )
110 108 109 106 mulassd ( ( 𝜑𝑛𝐴 ) → ( ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) · ( log ‘ 𝑁 ) ) = ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( log ‘ 𝑁 ) ) ) )
111 107 110 eqtrd ( ( 𝜑𝑛𝐴 ) → ( ( log ‘ 𝑁 ) · ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) = ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( log ‘ 𝑁 ) ) ) )
112 111 sumeq2dv ( 𝜑 → Σ 𝑛𝐴 ( ( log ‘ 𝑁 ) · ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) = Σ 𝑛𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( log ‘ 𝑁 ) ) ) )
113 105 112 eqtr2d ( 𝜑 → Σ 𝑛𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( log ‘ 𝑁 ) ) ) = ( ( log ‘ 𝑁 ) · Σ 𝑛𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) )
114 100 113 breqtrd ( 𝜑 → Σ 𝑛𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ≤ ( ( log ‘ 𝑁 ) · Σ 𝑛𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) )
115 2 nnred ( 𝜑𝑁 ∈ ℝ )
116 2 nnge1d ( 𝜑 → 1 ≤ 𝑁 )
117 115 116 logge0d ( 𝜑 → 0 ≤ ( log ‘ 𝑁 ) )
118 xpfi ( ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ∈ Fin ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ∈ Fin )
119 55 72 118 syl2anc ( 𝜑 → ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ∈ Fin )
120 13 a1i ( ( 𝜑𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → Λ : ℕ ⟶ ℝ )
121 68 adantr ( ( 𝜑𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ⊆ ℕ )
122 xp1st ( 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) → ( 1st𝑢 ) ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) )
123 122 adantl ( ( 𝜑𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → ( 1st𝑢 ) ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) )
124 121 123 sseldd ( ( 𝜑𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → ( 1st𝑢 ) ∈ ℕ )
125 120 124 ffvelrnd ( ( 𝜑𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → ( Λ ‘ ( 1st𝑢 ) ) ∈ ℝ )
126 xp2nd ( 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) → ( 2nd𝑢 ) ∈ ( 1 ... 𝑁 ) )
127 126 adantl ( ( 𝜑𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → ( 2nd𝑢 ) ∈ ( 1 ... 𝑁 ) )
128 66 127 sseldi ( ( 𝜑𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → ( 2nd𝑢 ) ∈ ℕ )
129 120 128 ffvelrnd ( ( 𝜑𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → ( Λ ‘ ( 2nd𝑢 ) ) ∈ ℝ )
130 125 129 remulcld ( ( 𝜑𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → ( ( Λ ‘ ( 1st𝑢 ) ) · ( Λ ‘ ( 2nd𝑢 ) ) ) ∈ ℝ )
131 vmage0 ( ( 1st𝑢 ) ∈ ℕ → 0 ≤ ( Λ ‘ ( 1st𝑢 ) ) )
132 124 131 syl ( ( 𝜑𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → 0 ≤ ( Λ ‘ ( 1st𝑢 ) ) )
133 vmage0 ( ( 2nd𝑢 ) ∈ ℕ → 0 ≤ ( Λ ‘ ( 2nd𝑢 ) ) )
134 128 133 syl ( ( 𝜑𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → 0 ≤ ( Λ ‘ ( 2nd𝑢 ) ) )
135 125 129 132 134 mulge0d ( ( 𝜑𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ) → 0 ≤ ( ( Λ ‘ ( 1st𝑢 ) ) · ( Λ ‘ ( 2nd𝑢 ) ) ) )
136 ssidd ( ( 𝜑𝑐𝐴 ) → ℕ ⊆ ℕ )
137 16 adantr ( ( 𝜑𝑐𝐴 ) → 𝑁 ∈ ℤ )
138 6 a1i ( ( 𝜑𝑐𝐴 ) → 3 ∈ ℕ0 )
139 simpr ( ( 𝜑𝑐𝐴 ) → 𝑐𝐴 )
140 10 139 sseldi ( ( 𝜑𝑐𝐴 ) → 𝑐 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) )
141 136 137 138 140 reprf ( ( 𝜑𝑐𝐴 ) → 𝑐 : ( 0 ..^ 3 ) ⟶ ℕ )
142 25 a1i ( ( 𝜑𝑐𝐴 ) → 0 ∈ ( 0 ..^ 3 ) )
143 141 142 ffvelrnd ( ( 𝜑𝑐𝐴 ) → ( 𝑐 ‘ 0 ) ∈ ℕ )
144 2 adantr ( ( 𝜑𝑐𝐴 ) → 𝑁 ∈ ℕ )
145 136 137 138 140 142 reprle ( ( 𝜑𝑐𝐴 ) → ( 𝑐 ‘ 0 ) ≤ 𝑁 )
146 elfz1b ( ( 𝑐 ‘ 0 ) ∈ ( 1 ... 𝑁 ) ↔ ( ( 𝑐 ‘ 0 ) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑐 ‘ 0 ) ≤ 𝑁 ) )
147 146 biimpri ( ( ( 𝑐 ‘ 0 ) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑐 ‘ 0 ) ≤ 𝑁 ) → ( 𝑐 ‘ 0 ) ∈ ( 1 ... 𝑁 ) )
148 143 144 145 147 syl3anc ( ( 𝜑𝑐𝐴 ) → ( 𝑐 ‘ 0 ) ∈ ( 1 ... 𝑁 ) )
149 4 rabeq2i ( 𝑐𝐴 ↔ ( 𝑐 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) ∧ ¬ ( 𝑐 ‘ 0 ) ∈ ( 𝑂 ∩ ℙ ) ) )
150 149 simprbi ( 𝑐𝐴 → ¬ ( 𝑐 ‘ 0 ) ∈ ( 𝑂 ∩ ℙ ) )
151 1 oddprm2 ( ℙ ∖ { 2 } ) = ( 𝑂 ∩ ℙ )
152 151 eleq2i ( ( 𝑐 ‘ 0 ) ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝑐 ‘ 0 ) ∈ ( 𝑂 ∩ ℙ ) )
153 150 152 sylnibr ( 𝑐𝐴 → ¬ ( 𝑐 ‘ 0 ) ∈ ( ℙ ∖ { 2 } ) )
154 139 153 syl ( ( 𝜑𝑐𝐴 ) → ¬ ( 𝑐 ‘ 0 ) ∈ ( ℙ ∖ { 2 } ) )
155 148 154 jca ( ( 𝜑𝑐𝐴 ) → ( ( 𝑐 ‘ 0 ) ∈ ( 1 ... 𝑁 ) ∧ ¬ ( 𝑐 ‘ 0 ) ∈ ( ℙ ∖ { 2 } ) ) )
156 eldif ( ( 𝑐 ‘ 0 ) ∈ ( ( 1 ... 𝑁 ) ∖ ( ℙ ∖ { 2 } ) ) ↔ ( ( 𝑐 ‘ 0 ) ∈ ( 1 ... 𝑁 ) ∧ ¬ ( 𝑐 ‘ 0 ) ∈ ( ℙ ∖ { 2 } ) ) )
157 155 156 sylibr ( ( 𝜑𝑐𝐴 ) → ( 𝑐 ‘ 0 ) ∈ ( ( 1 ... 𝑁 ) ∖ ( ℙ ∖ { 2 } ) ) )
158 uncom ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) = ( { 2 } ∪ ( ( 1 ... 𝑁 ) ∖ ℙ ) )
159 undif3 ( { 2 } ∪ ( ( 1 ... 𝑁 ) ∖ ℙ ) ) = ( ( { 2 } ∪ ( 1 ... 𝑁 ) ) ∖ ( ℙ ∖ { 2 } ) )
160 158 159 eqtri ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) = ( ( { 2 } ∪ ( 1 ... 𝑁 ) ) ∖ ( ℙ ∖ { 2 } ) )
161 ssequn1 ( { 2 } ⊆ ( 1 ... 𝑁 ) ↔ ( { 2 } ∪ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) )
162 64 161 sylib ( 𝜑 → ( { 2 } ∪ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) )
163 162 difeq1d ( 𝜑 → ( ( { 2 } ∪ ( 1 ... 𝑁 ) ) ∖ ( ℙ ∖ { 2 } ) ) = ( ( 1 ... 𝑁 ) ∖ ( ℙ ∖ { 2 } ) ) )
164 160 163 syl5eq ( 𝜑 → ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) = ( ( 1 ... 𝑁 ) ∖ ( ℙ ∖ { 2 } ) ) )
165 164 eleq2d ( 𝜑 → ( ( 𝑐 ‘ 0 ) ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ↔ ( 𝑐 ‘ 0 ) ∈ ( ( 1 ... 𝑁 ) ∖ ( ℙ ∖ { 2 } ) ) ) )
166 165 adantr ( ( 𝜑𝑐𝐴 ) → ( ( 𝑐 ‘ 0 ) ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ↔ ( 𝑐 ‘ 0 ) ∈ ( ( 1 ... 𝑁 ) ∖ ( ℙ ∖ { 2 } ) ) ) )
167 157 166 mpbird ( ( 𝜑𝑐𝐴 ) → ( 𝑐 ‘ 0 ) ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) )
168 31 a1i ( ( 𝜑𝑐𝐴 ) → 1 ∈ ( 0 ..^ 3 ) )
169 141 168 ffvelrnd ( ( 𝜑𝑐𝐴 ) → ( 𝑐 ‘ 1 ) ∈ ℕ )
170 136 137 138 140 168 reprle ( ( 𝜑𝑐𝐴 ) → ( 𝑐 ‘ 1 ) ≤ 𝑁 )
171 elfz1b ( ( 𝑐 ‘ 1 ) ∈ ( 1 ... 𝑁 ) ↔ ( ( 𝑐 ‘ 1 ) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑐 ‘ 1 ) ≤ 𝑁 ) )
172 171 biimpri ( ( ( 𝑐 ‘ 1 ) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑐 ‘ 1 ) ≤ 𝑁 ) → ( 𝑐 ‘ 1 ) ∈ ( 1 ... 𝑁 ) )
173 169 144 170 172 syl3anc ( ( 𝜑𝑐𝐴 ) → ( 𝑐 ‘ 1 ) ∈ ( 1 ... 𝑁 ) )
174 167 173 opelxpd ( ( 𝜑𝑐𝐴 ) → ⟨ ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) ⟩ ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) )
175 174 ralrimiva ( 𝜑 → ∀ 𝑐𝐴 ⟨ ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) ⟩ ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) )
176 fveq1 ( 𝑑 = 𝑐 → ( 𝑑 ‘ 0 ) = ( 𝑐 ‘ 0 ) )
177 fveq1 ( 𝑑 = 𝑐 → ( 𝑑 ‘ 1 ) = ( 𝑐 ‘ 1 ) )
178 176 177 opeq12d ( 𝑑 = 𝑐 → ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ = ⟨ ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) ⟩ )
179 178 cbvmptv ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) = ( 𝑐𝐴 ↦ ⟨ ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) ⟩ )
180 179 rnmptss ( ∀ 𝑐𝐴 ⟨ ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) ⟩ ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) → ran ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ⊆ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) )
181 175 180 syl ( 𝜑 → ran ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ⊆ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) )
182 119 130 135 181 fsumless ( 𝜑 → Σ 𝑢 ∈ ran ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ( ( Λ ‘ ( 1st𝑢 ) ) · ( Λ ‘ ( 2nd𝑢 ) ) ) ≤ Σ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ( ( Λ ‘ ( 1st𝑢 ) ) · ( Λ ‘ ( 2nd𝑢 ) ) ) )
183 fvex ( 𝑛 ‘ 0 ) ∈ V
184 fvex ( 𝑛 ‘ 1 ) ∈ V
185 183 184 op1std ( 𝑢 = ⟨ ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) ⟩ → ( 1st𝑢 ) = ( 𝑛 ‘ 0 ) )
186 185 fveq2d ( 𝑢 = ⟨ ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) ⟩ → ( Λ ‘ ( 1st𝑢 ) ) = ( Λ ‘ ( 𝑛 ‘ 0 ) ) )
187 183 184 op2ndd ( 𝑢 = ⟨ ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) ⟩ → ( 2nd𝑢 ) = ( 𝑛 ‘ 1 ) )
188 187 fveq2d ( 𝑢 = ⟨ ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) ⟩ → ( Λ ‘ ( 2nd𝑢 ) ) = ( Λ ‘ ( 𝑛 ‘ 1 ) ) )
189 186 188 oveq12d ( 𝑢 = ⟨ ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) ⟩ → ( ( Λ ‘ ( 1st𝑢 ) ) · ( Λ ‘ ( 2nd𝑢 ) ) ) = ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) )
190 opex ⟨ ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) ⟩ ∈ V
191 190 rgenw 𝑐𝐴 ⟨ ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) ⟩ ∈ V
192 179 fnmpt ( ∀ 𝑐𝐴 ⟨ ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) ⟩ ∈ V → ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) Fn 𝐴 )
193 191 192 mp1i ( 𝜑 → ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) Fn 𝐴 )
194 eqidd ( 𝜑 → ran ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) = ran ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) )
195 141 ad2antrr ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) → 𝑐 : ( 0 ..^ 3 ) ⟶ ℕ )
196 195 ffnd ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) → 𝑐 Fn ( 0 ..^ 3 ) )
197 21 ad4ant13 ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) → 𝑛 : ( 0 ..^ 3 ) ⟶ ℕ )
198 197 ffnd ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) → 𝑛 Fn ( 0 ..^ 3 ) )
199 simpr ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) → ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) )
200 179 a1i ( 𝜑 → ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) = ( 𝑐𝐴 ↦ ⟨ ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) ⟩ ) )
201 190 a1i ( ( 𝜑𝑐𝐴 ) → ⟨ ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) ⟩ ∈ V )
202 200 201 fvmpt2d ( ( 𝜑𝑐𝐴 ) → ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ⟨ ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) ⟩ )
203 202 adantr ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) → ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ⟨ ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) ⟩ )
204 203 adantr ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) → ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ⟨ ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) ⟩ )
205 fveq1 ( 𝑐 = 𝑛 → ( 𝑐 ‘ 0 ) = ( 𝑛 ‘ 0 ) )
206 fveq1 ( 𝑐 = 𝑛 → ( 𝑐 ‘ 1 ) = ( 𝑛 ‘ 1 ) )
207 205 206 opeq12d ( 𝑐 = 𝑛 → ⟨ ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) ⟩ = ⟨ ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) ⟩ )
208 opex ⟨ ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) ⟩ ∈ V
209 208 a1i ( ( 𝜑𝑛𝐴 ) → ⟨ ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) ⟩ ∈ V )
210 179 207 19 209 fvmptd3 ( ( 𝜑𝑛𝐴 ) → ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) = ⟨ ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) ⟩ )
211 210 adantlr ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) → ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) = ⟨ ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) ⟩ )
212 211 adantr ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) → ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) = ⟨ ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) ⟩ )
213 199 204 212 3eqtr3d ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) → ⟨ ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) ⟩ = ⟨ ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) ⟩ )
214 183 184 opth2 ( ⟨ ( 𝑐 ‘ 0 ) , ( 𝑐 ‘ 1 ) ⟩ = ⟨ ( 𝑛 ‘ 0 ) , ( 𝑛 ‘ 1 ) ⟩ ↔ ( ( 𝑐 ‘ 0 ) = ( 𝑛 ‘ 0 ) ∧ ( 𝑐 ‘ 1 ) = ( 𝑛 ‘ 1 ) ) )
215 213 214 sylib ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) → ( ( 𝑐 ‘ 0 ) = ( 𝑛 ‘ 0 ) ∧ ( 𝑐 ‘ 1 ) = ( 𝑛 ‘ 1 ) ) )
216 215 simpld ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) → ( 𝑐 ‘ 0 ) = ( 𝑛 ‘ 0 ) )
217 216 ad2antrr ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 0 ) → ( 𝑐 ‘ 0 ) = ( 𝑛 ‘ 0 ) )
218 simpr ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 0 ) → 𝑖 = 0 )
219 218 fveq2d ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 0 ) → ( 𝑐𝑖 ) = ( 𝑐 ‘ 0 ) )
220 218 fveq2d ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 0 ) → ( 𝑛𝑖 ) = ( 𝑛 ‘ 0 ) )
221 217 219 220 3eqtr4d ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 0 ) → ( 𝑐𝑖 ) = ( 𝑛𝑖 ) )
222 215 simprd ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) → ( 𝑐 ‘ 1 ) = ( 𝑛 ‘ 1 ) )
223 222 ad2antrr ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 1 ) → ( 𝑐 ‘ 1 ) = ( 𝑛 ‘ 1 ) )
224 simpr ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 1 ) → 𝑖 = 1 )
225 224 fveq2d ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 1 ) → ( 𝑐𝑖 ) = ( 𝑐 ‘ 1 ) )
226 224 fveq2d ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 1 ) → ( 𝑛𝑖 ) = ( 𝑛 ‘ 1 ) )
227 223 225 226 3eqtr4d ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 1 ) → ( 𝑐𝑖 ) = ( 𝑛𝑖 ) )
228 216 ad2antrr ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑐 ‘ 0 ) = ( 𝑛 ‘ 0 ) )
229 222 ad2antrr ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑐 ‘ 1 ) = ( 𝑛 ‘ 1 ) )
230 228 229 oveq12d ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) = ( ( 𝑛 ‘ 0 ) + ( 𝑛 ‘ 1 ) ) )
231 230 oveq2d ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑁 − ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) ) = ( 𝑁 − ( ( 𝑛 ‘ 0 ) + ( 𝑛 ‘ 1 ) ) ) )
232 24 a1i ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 0 ..^ 3 ) = { 0 , 1 , 2 } )
233 232 sumeq1d ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → Σ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑐𝑗 ) = Σ 𝑗 ∈ { 0 , 1 , 2 } ( 𝑐𝑗 ) )
234 ssidd ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ℕ ⊆ ℕ )
235 137 ad4antr ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → 𝑁 ∈ ℤ )
236 6 a1i ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → 3 ∈ ℕ0 )
237 140 ad4antr ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → 𝑐 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) )
238 234 235 236 237 reprsum ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → Σ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑐𝑗 ) = 𝑁 )
239 fveq2 ( 𝑗 = 0 → ( 𝑐𝑗 ) = ( 𝑐 ‘ 0 ) )
240 fveq2 ( 𝑗 = 1 → ( 𝑐𝑗 ) = ( 𝑐 ‘ 1 ) )
241 fveq2 ( 𝑗 = 2 → ( 𝑐𝑗 ) = ( 𝑐 ‘ 2 ) )
242 143 nncnd ( ( 𝜑𝑐𝐴 ) → ( 𝑐 ‘ 0 ) ∈ ℂ )
243 242 ad4antr ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑐 ‘ 0 ) ∈ ℂ )
244 169 nncnd ( ( 𝜑𝑐𝐴 ) → ( 𝑐 ‘ 1 ) ∈ ℂ )
245 244 ad4antr ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑐 ‘ 1 ) ∈ ℂ )
246 37 a1i ( ( 𝜑𝑐𝐴 ) → 2 ∈ ( 0 ..^ 3 ) )
247 141 246 ffvelrnd ( ( 𝜑𝑐𝐴 ) → ( 𝑐 ‘ 2 ) ∈ ℕ )
248 247 nncnd ( ( 𝜑𝑐𝐴 ) → ( 𝑐 ‘ 2 ) ∈ ℂ )
249 248 ad4antr ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑐 ‘ 2 ) ∈ ℂ )
250 243 245 249 3jca ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( ( 𝑐 ‘ 0 ) ∈ ℂ ∧ ( 𝑐 ‘ 1 ) ∈ ℂ ∧ ( 𝑐 ‘ 2 ) ∈ ℂ ) )
251 22 29 35 3pm3.2i ( 0 ∈ V ∧ 1 ∈ V ∧ 2 ∈ V )
252 251 a1i ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 0 ∈ V ∧ 1 ∈ V ∧ 2 ∈ V ) )
253 0ne1 0 ≠ 1
254 253 a1i ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → 0 ≠ 1 )
255 0ne2 0 ≠ 2
256 255 a1i ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → 0 ≠ 2 )
257 1ne2 1 ≠ 2
258 257 a1i ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → 1 ≠ 2 )
259 239 240 241 250 252 254 256 258 sumtp ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → Σ 𝑗 ∈ { 0 , 1 , 2 } ( 𝑐𝑗 ) = ( ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) + ( 𝑐 ‘ 2 ) ) )
260 233 238 259 3eqtr3rd ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) + ( 𝑐 ‘ 2 ) ) = 𝑁 )
261 243 245 addcld ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) ∈ ℂ )
262 101 ad5antr ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → 𝑁 ∈ ℂ )
263 261 249 262 addrsub ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( ( ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) + ( 𝑐 ‘ 2 ) ) = 𝑁 ↔ ( 𝑐 ‘ 2 ) = ( 𝑁 − ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) ) ) )
264 260 263 mpbid ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑐 ‘ 2 ) = ( 𝑁 − ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) ) )
265 232 sumeq1d ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → Σ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑛𝑗 ) = Σ 𝑗 ∈ { 0 , 1 , 2 } ( 𝑛𝑗 ) )
266 20 ad4ant13 ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) → 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) )
267 266 ad2antrr ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → 𝑛 ∈ ( ℕ ( repr ‘ 3 ) 𝑁 ) )
268 234 235 236 267 reprsum ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → Σ 𝑗 ∈ ( 0 ..^ 3 ) ( 𝑛𝑗 ) = 𝑁 )
269 fveq2 ( 𝑗 = 0 → ( 𝑛𝑗 ) = ( 𝑛 ‘ 0 ) )
270 fveq2 ( 𝑗 = 1 → ( 𝑛𝑗 ) = ( 𝑛 ‘ 1 ) )
271 fveq2 ( 𝑗 = 2 → ( 𝑛𝑗 ) = ( 𝑛 ‘ 2 ) )
272 27 nncnd ( ( 𝜑𝑛𝐴 ) → ( 𝑛 ‘ 0 ) ∈ ℂ )
273 272 adantlr ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) → ( 𝑛 ‘ 0 ) ∈ ℂ )
274 273 ad3antrrr ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑛 ‘ 0 ) ∈ ℂ )
275 33 nncnd ( ( 𝜑𝑛𝐴 ) → ( 𝑛 ‘ 1 ) ∈ ℂ )
276 275 adantlr ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) → ( 𝑛 ‘ 1 ) ∈ ℂ )
277 276 ad3antrrr ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑛 ‘ 1 ) ∈ ℂ )
278 39 nncnd ( ( 𝜑𝑛𝐴 ) → ( 𝑛 ‘ 2 ) ∈ ℂ )
279 278 adantlr ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) → ( 𝑛 ‘ 2 ) ∈ ℂ )
280 279 ad3antrrr ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑛 ‘ 2 ) ∈ ℂ )
281 274 277 280 3jca ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( ( 𝑛 ‘ 0 ) ∈ ℂ ∧ ( 𝑛 ‘ 1 ) ∈ ℂ ∧ ( 𝑛 ‘ 2 ) ∈ ℂ ) )
282 269 270 271 281 252 254 256 258 sumtp ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → Σ 𝑗 ∈ { 0 , 1 , 2 } ( 𝑛𝑗 ) = ( ( ( 𝑛 ‘ 0 ) + ( 𝑛 ‘ 1 ) ) + ( 𝑛 ‘ 2 ) ) )
283 265 268 282 3eqtr3rd ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( ( ( 𝑛 ‘ 0 ) + ( 𝑛 ‘ 1 ) ) + ( 𝑛 ‘ 2 ) ) = 𝑁 )
284 274 277 addcld ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( ( 𝑛 ‘ 0 ) + ( 𝑛 ‘ 1 ) ) ∈ ℂ )
285 284 280 262 addrsub ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( ( ( ( 𝑛 ‘ 0 ) + ( 𝑛 ‘ 1 ) ) + ( 𝑛 ‘ 2 ) ) = 𝑁 ↔ ( 𝑛 ‘ 2 ) = ( 𝑁 − ( ( 𝑛 ‘ 0 ) + ( 𝑛 ‘ 1 ) ) ) ) )
286 283 285 mpbid ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑛 ‘ 2 ) = ( 𝑁 − ( ( 𝑛 ‘ 0 ) + ( 𝑛 ‘ 1 ) ) ) )
287 231 264 286 3eqtr4d ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑐 ‘ 2 ) = ( 𝑛 ‘ 2 ) )
288 simpr ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → 𝑖 = 2 )
289 288 fveq2d ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑐𝑖 ) = ( 𝑐 ‘ 2 ) )
290 288 fveq2d ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑛𝑖 ) = ( 𝑛 ‘ 2 ) )
291 287 289 290 3eqtr4d ( ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) ∧ 𝑖 = 2 ) → ( 𝑐𝑖 ) = ( 𝑛𝑖 ) )
292 simpr ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) → 𝑖 ∈ ( 0 ..^ 3 ) )
293 292 24 eleqtrdi ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) → 𝑖 ∈ { 0 , 1 , 2 } )
294 vex 𝑖 ∈ V
295 294 eltp ( 𝑖 ∈ { 0 , 1 , 2 } ↔ ( 𝑖 = 0 ∨ 𝑖 = 1 ∨ 𝑖 = 2 ) )
296 293 295 sylib ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) → ( 𝑖 = 0 ∨ 𝑖 = 1 ∨ 𝑖 = 2 ) )
297 221 227 291 296 mpjao3dan ( ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) ∧ 𝑖 ∈ ( 0 ..^ 3 ) ) → ( 𝑐𝑖 ) = ( 𝑛𝑖 ) )
298 196 198 297 eqfnfvd ( ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) ∧ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) ) → 𝑐 = 𝑛 )
299 298 ex ( ( ( 𝜑𝑐𝐴 ) ∧ 𝑛𝐴 ) → ( ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) → 𝑐 = 𝑛 ) )
300 299 anasss ( ( 𝜑 ∧ ( 𝑐𝐴𝑛𝐴 ) ) → ( ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) → 𝑐 = 𝑛 ) )
301 300 ralrimivva ( 𝜑 → ∀ 𝑐𝐴𝑛𝐴 ( ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) → 𝑐 = 𝑛 ) )
302 dff1o6 ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) : 𝐴1-1-onto→ ran ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ↔ ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) Fn 𝐴 ∧ ran ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) = ran ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ∧ ∀ 𝑐𝐴𝑛𝐴 ( ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) → 𝑐 = 𝑛 ) ) )
303 302 biimpri ( ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) Fn 𝐴 ∧ ran ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) = ran ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ∧ ∀ 𝑐𝐴𝑛𝐴 ( ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑐 ) = ( ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ‘ 𝑛 ) → 𝑐 = 𝑛 ) ) → ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) : 𝐴1-1-onto→ ran ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) )
304 193 194 301 303 syl3anc ( 𝜑 → ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) : 𝐴1-1-onto→ ran ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) )
305 181 sselda ( ( 𝜑𝑢 ∈ ran ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ) → 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) )
306 305 125 syldan ( ( 𝜑𝑢 ∈ ran ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ) → ( Λ ‘ ( 1st𝑢 ) ) ∈ ℝ )
307 305 129 syldan ( ( 𝜑𝑢 ∈ ran ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ) → ( Λ ‘ ( 2nd𝑢 ) ) ∈ ℝ )
308 306 307 remulcld ( ( 𝜑𝑢 ∈ ran ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ) → ( ( Λ ‘ ( 1st𝑢 ) ) · ( Λ ‘ ( 2nd𝑢 ) ) ) ∈ ℝ )
309 308 recnd ( ( 𝜑𝑢 ∈ ran ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ) → ( ( Λ ‘ ( 1st𝑢 ) ) · ( Λ ‘ ( 2nd𝑢 ) ) ) ∈ ℂ )
310 189 12 304 210 309 fsumf1o ( 𝜑 → Σ 𝑢 ∈ ran ( 𝑑𝐴 ↦ ⟨ ( 𝑑 ‘ 0 ) , ( 𝑑 ‘ 1 ) ⟩ ) ( ( Λ ‘ ( 1st𝑢 ) ) · ( Λ ‘ ( 2nd𝑢 ) ) ) = Σ 𝑛𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) )
311 76 recnd ( 𝜑 → Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ∈ ℂ )
312 70 recnd ( ( 𝜑𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ) → ( Λ ‘ 𝑖 ) ∈ ℂ )
313 55 311 312 fsummulc1 ( 𝜑 → ( Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ( Λ ‘ 𝑖 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) = Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ( ( Λ ‘ 𝑖 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) )
314 49 a1i ( ( 𝜑𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ) → ( 1 ... 𝑁 ) ∈ Fin )
315 75 adantrl ( ( 𝜑 ∧ ( 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) → ( Λ ‘ 𝑗 ) ∈ ℝ )
316 315 anassrs ( ( ( 𝜑𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( Λ ‘ 𝑗 ) ∈ ℝ )
317 316 recnd ( ( ( 𝜑𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( Λ ‘ 𝑗 ) ∈ ℂ )
318 314 312 317 fsummulc2 ( ( 𝜑𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ) → ( ( Λ ‘ 𝑖 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) = Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( Λ ‘ 𝑖 ) · ( Λ ‘ 𝑗 ) ) )
319 318 sumeq2dv ( 𝜑 → Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ( ( Λ ‘ 𝑖 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) = Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( Λ ‘ 𝑖 ) · ( Λ ‘ 𝑗 ) ) )
320 vex 𝑗 ∈ V
321 294 320 op1std ( 𝑢 = ⟨ 𝑖 , 𝑗 ⟩ → ( 1st𝑢 ) = 𝑖 )
322 321 fveq2d ( 𝑢 = ⟨ 𝑖 , 𝑗 ⟩ → ( Λ ‘ ( 1st𝑢 ) ) = ( Λ ‘ 𝑖 ) )
323 294 320 op2ndd ( 𝑢 = ⟨ 𝑖 , 𝑗 ⟩ → ( 2nd𝑢 ) = 𝑗 )
324 323 fveq2d ( 𝑢 = ⟨ 𝑖 , 𝑗 ⟩ → ( Λ ‘ ( 2nd𝑢 ) ) = ( Λ ‘ 𝑗 ) )
325 322 324 oveq12d ( 𝑢 = ⟨ 𝑖 , 𝑗 ⟩ → ( ( Λ ‘ ( 1st𝑢 ) ) · ( Λ ‘ ( 2nd𝑢 ) ) ) = ( ( Λ ‘ 𝑖 ) · ( Λ ‘ 𝑗 ) ) )
326 70 adantrr ( ( 𝜑 ∧ ( 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) → ( Λ ‘ 𝑖 ) ∈ ℝ )
327 326 315 remulcld ( ( 𝜑 ∧ ( 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) → ( ( Λ ‘ 𝑖 ) · ( Λ ‘ 𝑗 ) ) ∈ ℝ )
328 327 recnd ( ( 𝜑 ∧ ( 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) → ( ( Λ ‘ 𝑖 ) · ( Λ ‘ 𝑗 ) ) ∈ ℂ )
329 325 55 72 328 fsumxp ( 𝜑 → Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( Λ ‘ 𝑖 ) · ( Λ ‘ 𝑗 ) ) = Σ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ( ( Λ ‘ ( 1st𝑢 ) ) · ( Λ ‘ ( 2nd𝑢 ) ) ) )
330 313 319 329 3eqtrrd ( 𝜑 → Σ 𝑢 ∈ ( ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) × ( 1 ... 𝑁 ) ) ( ( Λ ‘ ( 1st𝑢 ) ) · ( Λ ‘ ( 2nd𝑢 ) ) ) = ( Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ( Λ ‘ 𝑖 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) )
331 182 310 330 3brtr3d ( 𝜑 → Σ 𝑛𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ≤ ( Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ( Λ ‘ 𝑖 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) )
332 47 77 45 117 331 lemul2ad ( 𝜑 → ( ( log ‘ 𝑁 ) · Σ 𝑛𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( Λ ‘ ( 𝑛 ‘ 1 ) ) ) ) ≤ ( ( log ‘ 𝑁 ) · ( Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ( Λ ‘ 𝑖 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) ) )
333 43 48 78 114 332 letrd ( 𝜑 → Σ 𝑛𝐴 ( ( Λ ‘ ( 𝑛 ‘ 0 ) ) · ( ( Λ ‘ ( 𝑛 ‘ 1 ) ) · ( Λ ‘ ( 𝑛 ‘ 2 ) ) ) ) ≤ ( ( log ‘ 𝑁 ) · ( Σ 𝑖 ∈ ( ( ( 1 ... 𝑁 ) ∖ ℙ ) ∪ { 2 } ) ( Λ ‘ 𝑖 ) · Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( Λ ‘ 𝑗 ) ) ) )