| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgt750leme.o |  |-  O = { z e. ZZ | -. 2 || z } | 
						
							| 2 |  | hgt750leme.n |  |-  ( ph -> N e. NN ) | 
						
							| 3 |  | hgt750lemb.2 |  |-  ( ph -> 2 <_ N ) | 
						
							| 4 |  | hgt750lemb.a |  |-  A = { c e. ( NN ( repr ` 3 ) N ) | -. ( c ` 0 ) e. ( O i^i Prime ) } | 
						
							| 5 | 2 | nnnn0d |  |-  ( ph -> N e. NN0 ) | 
						
							| 6 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 7 | 6 | a1i |  |-  ( ph -> 3 e. NN0 ) | 
						
							| 8 |  | ssidd |  |-  ( ph -> NN C_ NN ) | 
						
							| 9 | 5 7 8 | reprfi2 |  |-  ( ph -> ( NN ( repr ` 3 ) N ) e. Fin ) | 
						
							| 10 | 4 | ssrab3 |  |-  A C_ ( NN ( repr ` 3 ) N ) | 
						
							| 11 |  | ssfi |  |-  ( ( ( NN ( repr ` 3 ) N ) e. Fin /\ A C_ ( NN ( repr ` 3 ) N ) ) -> A e. Fin ) | 
						
							| 12 | 9 10 11 | sylancl |  |-  ( ph -> A e. Fin ) | 
						
							| 13 |  | vmaf |  |-  Lam : NN --> RR | 
						
							| 14 | 13 | a1i |  |-  ( ( ph /\ n e. A ) -> Lam : NN --> RR ) | 
						
							| 15 |  | ssidd |  |-  ( ( ph /\ n e. A ) -> NN C_ NN ) | 
						
							| 16 | 2 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ph /\ n e. A ) -> N e. ZZ ) | 
						
							| 18 | 6 | a1i |  |-  ( ( ph /\ n e. A ) -> 3 e. NN0 ) | 
						
							| 19 |  | simpr |  |-  ( ( ph /\ n e. A ) -> n e. A ) | 
						
							| 20 | 10 19 | sselid |  |-  ( ( ph /\ n e. A ) -> n e. ( NN ( repr ` 3 ) N ) ) | 
						
							| 21 | 15 17 18 20 | reprf |  |-  ( ( ph /\ n e. A ) -> n : ( 0 ..^ 3 ) --> NN ) | 
						
							| 22 |  | c0ex |  |-  0 e. _V | 
						
							| 23 | 22 | tpid1 |  |-  0 e. { 0 , 1 , 2 } | 
						
							| 24 |  | fzo0to3tp |  |-  ( 0 ..^ 3 ) = { 0 , 1 , 2 } | 
						
							| 25 | 23 24 | eleqtrri |  |-  0 e. ( 0 ..^ 3 ) | 
						
							| 26 | 25 | a1i |  |-  ( ( ph /\ n e. A ) -> 0 e. ( 0 ..^ 3 ) ) | 
						
							| 27 | 21 26 | ffvelcdmd |  |-  ( ( ph /\ n e. A ) -> ( n ` 0 ) e. NN ) | 
						
							| 28 | 14 27 | ffvelcdmd |  |-  ( ( ph /\ n e. A ) -> ( Lam ` ( n ` 0 ) ) e. RR ) | 
						
							| 29 |  | 1ex |  |-  1 e. _V | 
						
							| 30 | 29 | tpid2 |  |-  1 e. { 0 , 1 , 2 } | 
						
							| 31 | 30 24 | eleqtrri |  |-  1 e. ( 0 ..^ 3 ) | 
						
							| 32 | 31 | a1i |  |-  ( ( ph /\ n e. A ) -> 1 e. ( 0 ..^ 3 ) ) | 
						
							| 33 | 21 32 | ffvelcdmd |  |-  ( ( ph /\ n e. A ) -> ( n ` 1 ) e. NN ) | 
						
							| 34 | 14 33 | ffvelcdmd |  |-  ( ( ph /\ n e. A ) -> ( Lam ` ( n ` 1 ) ) e. RR ) | 
						
							| 35 |  | 2ex |  |-  2 e. _V | 
						
							| 36 | 35 | tpid3 |  |-  2 e. { 0 , 1 , 2 } | 
						
							| 37 | 36 24 | eleqtrri |  |-  2 e. ( 0 ..^ 3 ) | 
						
							| 38 | 37 | a1i |  |-  ( ( ph /\ n e. A ) -> 2 e. ( 0 ..^ 3 ) ) | 
						
							| 39 | 21 38 | ffvelcdmd |  |-  ( ( ph /\ n e. A ) -> ( n ` 2 ) e. NN ) | 
						
							| 40 | 14 39 | ffvelcdmd |  |-  ( ( ph /\ n e. A ) -> ( Lam ` ( n ` 2 ) ) e. RR ) | 
						
							| 41 | 34 40 | remulcld |  |-  ( ( ph /\ n e. A ) -> ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) e. RR ) | 
						
							| 42 | 28 41 | remulcld |  |-  ( ( ph /\ n e. A ) -> ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) e. RR ) | 
						
							| 43 | 12 42 | fsumrecl |  |-  ( ph -> sum_ n e. A ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) e. RR ) | 
						
							| 44 | 2 | nnrpd |  |-  ( ph -> N e. RR+ ) | 
						
							| 45 | 44 | relogcld |  |-  ( ph -> ( log ` N ) e. RR ) | 
						
							| 46 | 28 34 | remulcld |  |-  ( ( ph /\ n e. A ) -> ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) e. RR ) | 
						
							| 47 | 12 46 | fsumrecl |  |-  ( ph -> sum_ n e. A ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) e. RR ) | 
						
							| 48 | 45 47 | remulcld |  |-  ( ph -> ( ( log ` N ) x. sum_ n e. A ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) ) e. RR ) | 
						
							| 49 |  | fzfi |  |-  ( 1 ... N ) e. Fin | 
						
							| 50 |  | diffi |  |-  ( ( 1 ... N ) e. Fin -> ( ( 1 ... N ) \ Prime ) e. Fin ) | 
						
							| 51 | 49 50 | ax-mp |  |-  ( ( 1 ... N ) \ Prime ) e. Fin | 
						
							| 52 |  | snfi |  |-  { 2 } e. Fin | 
						
							| 53 |  | unfi |  |-  ( ( ( ( 1 ... N ) \ Prime ) e. Fin /\ { 2 } e. Fin ) -> ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) e. Fin ) | 
						
							| 54 | 51 52 53 | mp2an |  |-  ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) e. Fin | 
						
							| 55 | 54 | a1i |  |-  ( ph -> ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) e. Fin ) | 
						
							| 56 | 13 | a1i |  |-  ( ( ph /\ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) -> Lam : NN --> RR ) | 
						
							| 57 |  | difss |  |-  ( ( 1 ... N ) \ Prime ) C_ ( 1 ... N ) | 
						
							| 58 | 57 | a1i |  |-  ( ph -> ( ( 1 ... N ) \ Prime ) C_ ( 1 ... N ) ) | 
						
							| 59 |  | 2nn |  |-  2 e. NN | 
						
							| 60 | 59 | a1i |  |-  ( ph -> 2 e. NN ) | 
						
							| 61 |  | elfz1b |  |-  ( 2 e. ( 1 ... N ) <-> ( 2 e. NN /\ N e. NN /\ 2 <_ N ) ) | 
						
							| 62 | 61 | biimpri |  |-  ( ( 2 e. NN /\ N e. NN /\ 2 <_ N ) -> 2 e. ( 1 ... N ) ) | 
						
							| 63 | 60 2 3 62 | syl3anc |  |-  ( ph -> 2 e. ( 1 ... N ) ) | 
						
							| 64 | 63 | snssd |  |-  ( ph -> { 2 } C_ ( 1 ... N ) ) | 
						
							| 65 | 58 64 | unssd |  |-  ( ph -> ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) C_ ( 1 ... N ) ) | 
						
							| 66 |  | fz1ssnn |  |-  ( 1 ... N ) C_ NN | 
						
							| 67 | 66 | a1i |  |-  ( ph -> ( 1 ... N ) C_ NN ) | 
						
							| 68 | 65 67 | sstrd |  |-  ( ph -> ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) C_ NN ) | 
						
							| 69 | 68 | sselda |  |-  ( ( ph /\ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) -> i e. NN ) | 
						
							| 70 | 56 69 | ffvelcdmd |  |-  ( ( ph /\ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) -> ( Lam ` i ) e. RR ) | 
						
							| 71 | 55 70 | fsumrecl |  |-  ( ph -> sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) e. RR ) | 
						
							| 72 |  | fzfid |  |-  ( ph -> ( 1 ... N ) e. Fin ) | 
						
							| 73 | 13 | a1i |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> Lam : NN --> RR ) | 
						
							| 74 | 67 | sselda |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> j e. NN ) | 
						
							| 75 | 73 74 | ffvelcdmd |  |-  ( ( ph /\ j e. ( 1 ... N ) ) -> ( Lam ` j ) e. RR ) | 
						
							| 76 | 72 75 | fsumrecl |  |-  ( ph -> sum_ j e. ( 1 ... N ) ( Lam ` j ) e. RR ) | 
						
							| 77 | 71 76 | remulcld |  |-  ( ph -> ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) e. RR ) | 
						
							| 78 | 45 77 | remulcld |  |-  ( ph -> ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) e. RR ) | 
						
							| 79 | 2 | adantr |  |-  ( ( ph /\ n e. A ) -> N e. NN ) | 
						
							| 80 | 79 | nnrpd |  |-  ( ( ph /\ n e. A ) -> N e. RR+ ) | 
						
							| 81 |  | relogcl |  |-  ( N e. RR+ -> ( log ` N ) e. RR ) | 
						
							| 82 | 80 81 | syl |  |-  ( ( ph /\ n e. A ) -> ( log ` N ) e. RR ) | 
						
							| 83 | 34 82 | remulcld |  |-  ( ( ph /\ n e. A ) -> ( ( Lam ` ( n ` 1 ) ) x. ( log ` N ) ) e. RR ) | 
						
							| 84 | 28 83 | remulcld |  |-  ( ( ph /\ n e. A ) -> ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( log ` N ) ) ) e. RR ) | 
						
							| 85 |  | vmage0 |  |-  ( ( n ` 0 ) e. NN -> 0 <_ ( Lam ` ( n ` 0 ) ) ) | 
						
							| 86 | 27 85 | syl |  |-  ( ( ph /\ n e. A ) -> 0 <_ ( Lam ` ( n ` 0 ) ) ) | 
						
							| 87 |  | vmage0 |  |-  ( ( n ` 1 ) e. NN -> 0 <_ ( Lam ` ( n ` 1 ) ) ) | 
						
							| 88 | 33 87 | syl |  |-  ( ( ph /\ n e. A ) -> 0 <_ ( Lam ` ( n ` 1 ) ) ) | 
						
							| 89 | 39 | nnrpd |  |-  ( ( ph /\ n e. A ) -> ( n ` 2 ) e. RR+ ) | 
						
							| 90 | 89 | relogcld |  |-  ( ( ph /\ n e. A ) -> ( log ` ( n ` 2 ) ) e. RR ) | 
						
							| 91 |  | vmalelog |  |-  ( ( n ` 2 ) e. NN -> ( Lam ` ( n ` 2 ) ) <_ ( log ` ( n ` 2 ) ) ) | 
						
							| 92 | 39 91 | syl |  |-  ( ( ph /\ n e. A ) -> ( Lam ` ( n ` 2 ) ) <_ ( log ` ( n ` 2 ) ) ) | 
						
							| 93 | 15 17 18 20 38 | reprle |  |-  ( ( ph /\ n e. A ) -> ( n ` 2 ) <_ N ) | 
						
							| 94 |  | logleb |  |-  ( ( ( n ` 2 ) e. RR+ /\ N e. RR+ ) -> ( ( n ` 2 ) <_ N <-> ( log ` ( n ` 2 ) ) <_ ( log ` N ) ) ) | 
						
							| 95 | 94 | biimpa |  |-  ( ( ( ( n ` 2 ) e. RR+ /\ N e. RR+ ) /\ ( n ` 2 ) <_ N ) -> ( log ` ( n ` 2 ) ) <_ ( log ` N ) ) | 
						
							| 96 | 89 80 93 95 | syl21anc |  |-  ( ( ph /\ n e. A ) -> ( log ` ( n ` 2 ) ) <_ ( log ` N ) ) | 
						
							| 97 | 40 90 82 92 96 | letrd |  |-  ( ( ph /\ n e. A ) -> ( Lam ` ( n ` 2 ) ) <_ ( log ` N ) ) | 
						
							| 98 | 40 82 34 88 97 | lemul2ad |  |-  ( ( ph /\ n e. A ) -> ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) <_ ( ( Lam ` ( n ` 1 ) ) x. ( log ` N ) ) ) | 
						
							| 99 | 41 83 28 86 98 | lemul2ad |  |-  ( ( ph /\ n e. A ) -> ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) <_ ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( log ` N ) ) ) ) | 
						
							| 100 | 12 42 84 99 | fsumle |  |-  ( ph -> sum_ n e. A ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) <_ sum_ n e. A ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( log ` N ) ) ) ) | 
						
							| 101 | 2 | nncnd |  |-  ( ph -> N e. CC ) | 
						
							| 102 | 2 | nnne0d |  |-  ( ph -> N =/= 0 ) | 
						
							| 103 | 101 102 | logcld |  |-  ( ph -> ( log ` N ) e. CC ) | 
						
							| 104 | 46 | recnd |  |-  ( ( ph /\ n e. A ) -> ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) e. CC ) | 
						
							| 105 | 12 103 104 | fsummulc2 |  |-  ( ph -> ( ( log ` N ) x. sum_ n e. A ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) ) = sum_ n e. A ( ( log ` N ) x. ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) ) ) | 
						
							| 106 | 103 | adantr |  |-  ( ( ph /\ n e. A ) -> ( log ` N ) e. CC ) | 
						
							| 107 | 106 104 | mulcomd |  |-  ( ( ph /\ n e. A ) -> ( ( log ` N ) x. ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) ) = ( ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) x. ( log ` N ) ) ) | 
						
							| 108 | 28 | recnd |  |-  ( ( ph /\ n e. A ) -> ( Lam ` ( n ` 0 ) ) e. CC ) | 
						
							| 109 | 34 | recnd |  |-  ( ( ph /\ n e. A ) -> ( Lam ` ( n ` 1 ) ) e. CC ) | 
						
							| 110 | 108 109 106 | mulassd |  |-  ( ( ph /\ n e. A ) -> ( ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) x. ( log ` N ) ) = ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( log ` N ) ) ) ) | 
						
							| 111 | 107 110 | eqtrd |  |-  ( ( ph /\ n e. A ) -> ( ( log ` N ) x. ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) ) = ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( log ` N ) ) ) ) | 
						
							| 112 | 111 | sumeq2dv |  |-  ( ph -> sum_ n e. A ( ( log ` N ) x. ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) ) = sum_ n e. A ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( log ` N ) ) ) ) | 
						
							| 113 | 105 112 | eqtr2d |  |-  ( ph -> sum_ n e. A ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( log ` N ) ) ) = ( ( log ` N ) x. sum_ n e. A ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) ) ) | 
						
							| 114 | 100 113 | breqtrd |  |-  ( ph -> sum_ n e. A ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) <_ ( ( log ` N ) x. sum_ n e. A ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) ) ) | 
						
							| 115 | 2 | nnred |  |-  ( ph -> N e. RR ) | 
						
							| 116 | 2 | nnge1d |  |-  ( ph -> 1 <_ N ) | 
						
							| 117 | 115 116 | logge0d |  |-  ( ph -> 0 <_ ( log ` N ) ) | 
						
							| 118 |  | xpfi |  |-  ( ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) e. Fin /\ ( 1 ... N ) e. Fin ) -> ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) e. Fin ) | 
						
							| 119 | 55 72 118 | syl2anc |  |-  ( ph -> ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) e. Fin ) | 
						
							| 120 | 13 | a1i |  |-  ( ( ph /\ u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) -> Lam : NN --> RR ) | 
						
							| 121 | 68 | adantr |  |-  ( ( ph /\ u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) -> ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) C_ NN ) | 
						
							| 122 |  | xp1st |  |-  ( u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) -> ( 1st ` u ) e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) | 
						
							| 123 | 122 | adantl |  |-  ( ( ph /\ u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) -> ( 1st ` u ) e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) | 
						
							| 124 | 121 123 | sseldd |  |-  ( ( ph /\ u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) -> ( 1st ` u ) e. NN ) | 
						
							| 125 | 120 124 | ffvelcdmd |  |-  ( ( ph /\ u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) -> ( Lam ` ( 1st ` u ) ) e. RR ) | 
						
							| 126 |  | xp2nd |  |-  ( u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) -> ( 2nd ` u ) e. ( 1 ... N ) ) | 
						
							| 127 | 126 | adantl |  |-  ( ( ph /\ u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) -> ( 2nd ` u ) e. ( 1 ... N ) ) | 
						
							| 128 | 66 127 | sselid |  |-  ( ( ph /\ u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) -> ( 2nd ` u ) e. NN ) | 
						
							| 129 | 120 128 | ffvelcdmd |  |-  ( ( ph /\ u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) -> ( Lam ` ( 2nd ` u ) ) e. RR ) | 
						
							| 130 | 125 129 | remulcld |  |-  ( ( ph /\ u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) -> ( ( Lam ` ( 1st ` u ) ) x. ( Lam ` ( 2nd ` u ) ) ) e. RR ) | 
						
							| 131 |  | vmage0 |  |-  ( ( 1st ` u ) e. NN -> 0 <_ ( Lam ` ( 1st ` u ) ) ) | 
						
							| 132 | 124 131 | syl |  |-  ( ( ph /\ u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) -> 0 <_ ( Lam ` ( 1st ` u ) ) ) | 
						
							| 133 |  | vmage0 |  |-  ( ( 2nd ` u ) e. NN -> 0 <_ ( Lam ` ( 2nd ` u ) ) ) | 
						
							| 134 | 128 133 | syl |  |-  ( ( ph /\ u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) -> 0 <_ ( Lam ` ( 2nd ` u ) ) ) | 
						
							| 135 | 125 129 132 134 | mulge0d |  |-  ( ( ph /\ u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) -> 0 <_ ( ( Lam ` ( 1st ` u ) ) x. ( Lam ` ( 2nd ` u ) ) ) ) | 
						
							| 136 |  | ssidd |  |-  ( ( ph /\ c e. A ) -> NN C_ NN ) | 
						
							| 137 | 16 | adantr |  |-  ( ( ph /\ c e. A ) -> N e. ZZ ) | 
						
							| 138 | 6 | a1i |  |-  ( ( ph /\ c e. A ) -> 3 e. NN0 ) | 
						
							| 139 |  | simpr |  |-  ( ( ph /\ c e. A ) -> c e. A ) | 
						
							| 140 | 10 139 | sselid |  |-  ( ( ph /\ c e. A ) -> c e. ( NN ( repr ` 3 ) N ) ) | 
						
							| 141 | 136 137 138 140 | reprf |  |-  ( ( ph /\ c e. A ) -> c : ( 0 ..^ 3 ) --> NN ) | 
						
							| 142 | 25 | a1i |  |-  ( ( ph /\ c e. A ) -> 0 e. ( 0 ..^ 3 ) ) | 
						
							| 143 | 141 142 | ffvelcdmd |  |-  ( ( ph /\ c e. A ) -> ( c ` 0 ) e. NN ) | 
						
							| 144 | 2 | adantr |  |-  ( ( ph /\ c e. A ) -> N e. NN ) | 
						
							| 145 | 136 137 138 140 142 | reprle |  |-  ( ( ph /\ c e. A ) -> ( c ` 0 ) <_ N ) | 
						
							| 146 |  | elfz1b |  |-  ( ( c ` 0 ) e. ( 1 ... N ) <-> ( ( c ` 0 ) e. NN /\ N e. NN /\ ( c ` 0 ) <_ N ) ) | 
						
							| 147 | 146 | biimpri |  |-  ( ( ( c ` 0 ) e. NN /\ N e. NN /\ ( c ` 0 ) <_ N ) -> ( c ` 0 ) e. ( 1 ... N ) ) | 
						
							| 148 | 143 144 145 147 | syl3anc |  |-  ( ( ph /\ c e. A ) -> ( c ` 0 ) e. ( 1 ... N ) ) | 
						
							| 149 | 4 | reqabi |  |-  ( c e. A <-> ( c e. ( NN ( repr ` 3 ) N ) /\ -. ( c ` 0 ) e. ( O i^i Prime ) ) ) | 
						
							| 150 | 149 | simprbi |  |-  ( c e. A -> -. ( c ` 0 ) e. ( O i^i Prime ) ) | 
						
							| 151 | 1 | oddprm2 |  |-  ( Prime \ { 2 } ) = ( O i^i Prime ) | 
						
							| 152 | 151 | eleq2i |  |-  ( ( c ` 0 ) e. ( Prime \ { 2 } ) <-> ( c ` 0 ) e. ( O i^i Prime ) ) | 
						
							| 153 | 150 152 | sylnibr |  |-  ( c e. A -> -. ( c ` 0 ) e. ( Prime \ { 2 } ) ) | 
						
							| 154 | 139 153 | syl |  |-  ( ( ph /\ c e. A ) -> -. ( c ` 0 ) e. ( Prime \ { 2 } ) ) | 
						
							| 155 | 148 154 | jca |  |-  ( ( ph /\ c e. A ) -> ( ( c ` 0 ) e. ( 1 ... N ) /\ -. ( c ` 0 ) e. ( Prime \ { 2 } ) ) ) | 
						
							| 156 |  | eldif |  |-  ( ( c ` 0 ) e. ( ( 1 ... N ) \ ( Prime \ { 2 } ) ) <-> ( ( c ` 0 ) e. ( 1 ... N ) /\ -. ( c ` 0 ) e. ( Prime \ { 2 } ) ) ) | 
						
							| 157 | 155 156 | sylibr |  |-  ( ( ph /\ c e. A ) -> ( c ` 0 ) e. ( ( 1 ... N ) \ ( Prime \ { 2 } ) ) ) | 
						
							| 158 |  | uncom |  |-  ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) = ( { 2 } u. ( ( 1 ... N ) \ Prime ) ) | 
						
							| 159 |  | undif3 |  |-  ( { 2 } u. ( ( 1 ... N ) \ Prime ) ) = ( ( { 2 } u. ( 1 ... N ) ) \ ( Prime \ { 2 } ) ) | 
						
							| 160 | 158 159 | eqtri |  |-  ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) = ( ( { 2 } u. ( 1 ... N ) ) \ ( Prime \ { 2 } ) ) | 
						
							| 161 |  | ssequn1 |  |-  ( { 2 } C_ ( 1 ... N ) <-> ( { 2 } u. ( 1 ... N ) ) = ( 1 ... N ) ) | 
						
							| 162 | 64 161 | sylib |  |-  ( ph -> ( { 2 } u. ( 1 ... N ) ) = ( 1 ... N ) ) | 
						
							| 163 | 162 | difeq1d |  |-  ( ph -> ( ( { 2 } u. ( 1 ... N ) ) \ ( Prime \ { 2 } ) ) = ( ( 1 ... N ) \ ( Prime \ { 2 } ) ) ) | 
						
							| 164 | 160 163 | eqtrid |  |-  ( ph -> ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) = ( ( 1 ... N ) \ ( Prime \ { 2 } ) ) ) | 
						
							| 165 | 164 | eleq2d |  |-  ( ph -> ( ( c ` 0 ) e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) <-> ( c ` 0 ) e. ( ( 1 ... N ) \ ( Prime \ { 2 } ) ) ) ) | 
						
							| 166 | 165 | adantr |  |-  ( ( ph /\ c e. A ) -> ( ( c ` 0 ) e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) <-> ( c ` 0 ) e. ( ( 1 ... N ) \ ( Prime \ { 2 } ) ) ) ) | 
						
							| 167 | 157 166 | mpbird |  |-  ( ( ph /\ c e. A ) -> ( c ` 0 ) e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) | 
						
							| 168 | 31 | a1i |  |-  ( ( ph /\ c e. A ) -> 1 e. ( 0 ..^ 3 ) ) | 
						
							| 169 | 141 168 | ffvelcdmd |  |-  ( ( ph /\ c e. A ) -> ( c ` 1 ) e. NN ) | 
						
							| 170 | 136 137 138 140 168 | reprle |  |-  ( ( ph /\ c e. A ) -> ( c ` 1 ) <_ N ) | 
						
							| 171 |  | elfz1b |  |-  ( ( c ` 1 ) e. ( 1 ... N ) <-> ( ( c ` 1 ) e. NN /\ N e. NN /\ ( c ` 1 ) <_ N ) ) | 
						
							| 172 | 171 | biimpri |  |-  ( ( ( c ` 1 ) e. NN /\ N e. NN /\ ( c ` 1 ) <_ N ) -> ( c ` 1 ) e. ( 1 ... N ) ) | 
						
							| 173 | 169 144 170 172 | syl3anc |  |-  ( ( ph /\ c e. A ) -> ( c ` 1 ) e. ( 1 ... N ) ) | 
						
							| 174 | 167 173 | opelxpd |  |-  ( ( ph /\ c e. A ) -> <. ( c ` 0 ) , ( c ` 1 ) >. e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) | 
						
							| 175 | 174 | ralrimiva |  |-  ( ph -> A. c e. A <. ( c ` 0 ) , ( c ` 1 ) >. e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) | 
						
							| 176 |  | fveq1 |  |-  ( d = c -> ( d ` 0 ) = ( c ` 0 ) ) | 
						
							| 177 |  | fveq1 |  |-  ( d = c -> ( d ` 1 ) = ( c ` 1 ) ) | 
						
							| 178 | 176 177 | opeq12d |  |-  ( d = c -> <. ( d ` 0 ) , ( d ` 1 ) >. = <. ( c ` 0 ) , ( c ` 1 ) >. ) | 
						
							| 179 | 178 | cbvmptv |  |-  ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) = ( c e. A |-> <. ( c ` 0 ) , ( c ` 1 ) >. ) | 
						
							| 180 | 179 | rnmptss |  |-  ( A. c e. A <. ( c ` 0 ) , ( c ` 1 ) >. e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) -> ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) C_ ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) | 
						
							| 181 | 175 180 | syl |  |-  ( ph -> ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) C_ ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) | 
						
							| 182 | 119 130 135 181 | fsumless |  |-  ( ph -> sum_ u e. ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ( ( Lam ` ( 1st ` u ) ) x. ( Lam ` ( 2nd ` u ) ) ) <_ sum_ u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ( ( Lam ` ( 1st ` u ) ) x. ( Lam ` ( 2nd ` u ) ) ) ) | 
						
							| 183 |  | fvex |  |-  ( n ` 0 ) e. _V | 
						
							| 184 |  | fvex |  |-  ( n ` 1 ) e. _V | 
						
							| 185 | 183 184 | op1std |  |-  ( u = <. ( n ` 0 ) , ( n ` 1 ) >. -> ( 1st ` u ) = ( n ` 0 ) ) | 
						
							| 186 | 185 | fveq2d |  |-  ( u = <. ( n ` 0 ) , ( n ` 1 ) >. -> ( Lam ` ( 1st ` u ) ) = ( Lam ` ( n ` 0 ) ) ) | 
						
							| 187 | 183 184 | op2ndd |  |-  ( u = <. ( n ` 0 ) , ( n ` 1 ) >. -> ( 2nd ` u ) = ( n ` 1 ) ) | 
						
							| 188 | 187 | fveq2d |  |-  ( u = <. ( n ` 0 ) , ( n ` 1 ) >. -> ( Lam ` ( 2nd ` u ) ) = ( Lam ` ( n ` 1 ) ) ) | 
						
							| 189 | 186 188 | oveq12d |  |-  ( u = <. ( n ` 0 ) , ( n ` 1 ) >. -> ( ( Lam ` ( 1st ` u ) ) x. ( Lam ` ( 2nd ` u ) ) ) = ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) ) | 
						
							| 190 |  | opex |  |-  <. ( c ` 0 ) , ( c ` 1 ) >. e. _V | 
						
							| 191 | 190 | rgenw |  |-  A. c e. A <. ( c ` 0 ) , ( c ` 1 ) >. e. _V | 
						
							| 192 | 179 | fnmpt |  |-  ( A. c e. A <. ( c ` 0 ) , ( c ` 1 ) >. e. _V -> ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) Fn A ) | 
						
							| 193 | 191 192 | mp1i |  |-  ( ph -> ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) Fn A ) | 
						
							| 194 |  | eqidd |  |-  ( ph -> ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) = ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ) | 
						
							| 195 | 141 | ad2antrr |  |-  ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) -> c : ( 0 ..^ 3 ) --> NN ) | 
						
							| 196 | 195 | ffnd |  |-  ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) -> c Fn ( 0 ..^ 3 ) ) | 
						
							| 197 | 21 | ad4ant13 |  |-  ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) -> n : ( 0 ..^ 3 ) --> NN ) | 
						
							| 198 | 197 | ffnd |  |-  ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) -> n Fn ( 0 ..^ 3 ) ) | 
						
							| 199 |  | simpr |  |-  ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) -> ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) | 
						
							| 200 | 179 | a1i |  |-  ( ph -> ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) = ( c e. A |-> <. ( c ` 0 ) , ( c ` 1 ) >. ) ) | 
						
							| 201 | 190 | a1i |  |-  ( ( ph /\ c e. A ) -> <. ( c ` 0 ) , ( c ` 1 ) >. e. _V ) | 
						
							| 202 | 200 201 | fvmpt2d |  |-  ( ( ph /\ c e. A ) -> ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = <. ( c ` 0 ) , ( c ` 1 ) >. ) | 
						
							| 203 | 202 | adantr |  |-  ( ( ( ph /\ c e. A ) /\ n e. A ) -> ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = <. ( c ` 0 ) , ( c ` 1 ) >. ) | 
						
							| 204 | 203 | adantr |  |-  ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) -> ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = <. ( c ` 0 ) , ( c ` 1 ) >. ) | 
						
							| 205 |  | fveq1 |  |-  ( c = n -> ( c ` 0 ) = ( n ` 0 ) ) | 
						
							| 206 |  | fveq1 |  |-  ( c = n -> ( c ` 1 ) = ( n ` 1 ) ) | 
						
							| 207 | 205 206 | opeq12d |  |-  ( c = n -> <. ( c ` 0 ) , ( c ` 1 ) >. = <. ( n ` 0 ) , ( n ` 1 ) >. ) | 
						
							| 208 |  | opex |  |-  <. ( n ` 0 ) , ( n ` 1 ) >. e. _V | 
						
							| 209 | 208 | a1i |  |-  ( ( ph /\ n e. A ) -> <. ( n ` 0 ) , ( n ` 1 ) >. e. _V ) | 
						
							| 210 | 179 207 19 209 | fvmptd3 |  |-  ( ( ph /\ n e. A ) -> ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) = <. ( n ` 0 ) , ( n ` 1 ) >. ) | 
						
							| 211 | 210 | adantlr |  |-  ( ( ( ph /\ c e. A ) /\ n e. A ) -> ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) = <. ( n ` 0 ) , ( n ` 1 ) >. ) | 
						
							| 212 | 211 | adantr |  |-  ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) -> ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) = <. ( n ` 0 ) , ( n ` 1 ) >. ) | 
						
							| 213 | 199 204 212 | 3eqtr3d |  |-  ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) -> <. ( c ` 0 ) , ( c ` 1 ) >. = <. ( n ` 0 ) , ( n ` 1 ) >. ) | 
						
							| 214 | 183 184 | opth2 |  |-  ( <. ( c ` 0 ) , ( c ` 1 ) >. = <. ( n ` 0 ) , ( n ` 1 ) >. <-> ( ( c ` 0 ) = ( n ` 0 ) /\ ( c ` 1 ) = ( n ` 1 ) ) ) | 
						
							| 215 | 213 214 | sylib |  |-  ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) -> ( ( c ` 0 ) = ( n ` 0 ) /\ ( c ` 1 ) = ( n ` 1 ) ) ) | 
						
							| 216 | 215 | simpld |  |-  ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) -> ( c ` 0 ) = ( n ` 0 ) ) | 
						
							| 217 | 216 | ad2antrr |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 0 ) -> ( c ` 0 ) = ( n ` 0 ) ) | 
						
							| 218 |  | simpr |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 0 ) -> i = 0 ) | 
						
							| 219 | 218 | fveq2d |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 0 ) -> ( c ` i ) = ( c ` 0 ) ) | 
						
							| 220 | 218 | fveq2d |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 0 ) -> ( n ` i ) = ( n ` 0 ) ) | 
						
							| 221 | 217 219 220 | 3eqtr4d |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 0 ) -> ( c ` i ) = ( n ` i ) ) | 
						
							| 222 | 215 | simprd |  |-  ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) -> ( c ` 1 ) = ( n ` 1 ) ) | 
						
							| 223 | 222 | ad2antrr |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 1 ) -> ( c ` 1 ) = ( n ` 1 ) ) | 
						
							| 224 |  | simpr |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 1 ) -> i = 1 ) | 
						
							| 225 | 224 | fveq2d |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 1 ) -> ( c ` i ) = ( c ` 1 ) ) | 
						
							| 226 | 224 | fveq2d |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 1 ) -> ( n ` i ) = ( n ` 1 ) ) | 
						
							| 227 | 223 225 226 | 3eqtr4d |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 1 ) -> ( c ` i ) = ( n ` i ) ) | 
						
							| 228 | 216 | ad2antrr |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( c ` 0 ) = ( n ` 0 ) ) | 
						
							| 229 | 222 | ad2antrr |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( c ` 1 ) = ( n ` 1 ) ) | 
						
							| 230 | 228 229 | oveq12d |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( ( c ` 0 ) + ( c ` 1 ) ) = ( ( n ` 0 ) + ( n ` 1 ) ) ) | 
						
							| 231 | 230 | oveq2d |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( N - ( ( c ` 0 ) + ( c ` 1 ) ) ) = ( N - ( ( n ` 0 ) + ( n ` 1 ) ) ) ) | 
						
							| 232 | 24 | a1i |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( 0 ..^ 3 ) = { 0 , 1 , 2 } ) | 
						
							| 233 | 232 | sumeq1d |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> sum_ j e. ( 0 ..^ 3 ) ( c ` j ) = sum_ j e. { 0 , 1 , 2 } ( c ` j ) ) | 
						
							| 234 |  | ssidd |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> NN C_ NN ) | 
						
							| 235 | 137 | ad4antr |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> N e. ZZ ) | 
						
							| 236 | 6 | a1i |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> 3 e. NN0 ) | 
						
							| 237 | 140 | ad4antr |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> c e. ( NN ( repr ` 3 ) N ) ) | 
						
							| 238 | 234 235 236 237 | reprsum |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> sum_ j e. ( 0 ..^ 3 ) ( c ` j ) = N ) | 
						
							| 239 |  | fveq2 |  |-  ( j = 0 -> ( c ` j ) = ( c ` 0 ) ) | 
						
							| 240 |  | fveq2 |  |-  ( j = 1 -> ( c ` j ) = ( c ` 1 ) ) | 
						
							| 241 |  | fveq2 |  |-  ( j = 2 -> ( c ` j ) = ( c ` 2 ) ) | 
						
							| 242 | 143 | nncnd |  |-  ( ( ph /\ c e. A ) -> ( c ` 0 ) e. CC ) | 
						
							| 243 | 242 | ad4antr |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( c ` 0 ) e. CC ) | 
						
							| 244 | 169 | nncnd |  |-  ( ( ph /\ c e. A ) -> ( c ` 1 ) e. CC ) | 
						
							| 245 | 244 | ad4antr |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( c ` 1 ) e. CC ) | 
						
							| 246 | 37 | a1i |  |-  ( ( ph /\ c e. A ) -> 2 e. ( 0 ..^ 3 ) ) | 
						
							| 247 | 141 246 | ffvelcdmd |  |-  ( ( ph /\ c e. A ) -> ( c ` 2 ) e. NN ) | 
						
							| 248 | 247 | nncnd |  |-  ( ( ph /\ c e. A ) -> ( c ` 2 ) e. CC ) | 
						
							| 249 | 248 | ad4antr |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( c ` 2 ) e. CC ) | 
						
							| 250 | 243 245 249 | 3jca |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( ( c ` 0 ) e. CC /\ ( c ` 1 ) e. CC /\ ( c ` 2 ) e. CC ) ) | 
						
							| 251 | 22 29 35 | 3pm3.2i |  |-  ( 0 e. _V /\ 1 e. _V /\ 2 e. _V ) | 
						
							| 252 | 251 | a1i |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( 0 e. _V /\ 1 e. _V /\ 2 e. _V ) ) | 
						
							| 253 |  | 0ne1 |  |-  0 =/= 1 | 
						
							| 254 | 253 | a1i |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> 0 =/= 1 ) | 
						
							| 255 |  | 0ne2 |  |-  0 =/= 2 | 
						
							| 256 | 255 | a1i |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> 0 =/= 2 ) | 
						
							| 257 |  | 1ne2 |  |-  1 =/= 2 | 
						
							| 258 | 257 | a1i |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> 1 =/= 2 ) | 
						
							| 259 | 239 240 241 250 252 254 256 258 | sumtp |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> sum_ j e. { 0 , 1 , 2 } ( c ` j ) = ( ( ( c ` 0 ) + ( c ` 1 ) ) + ( c ` 2 ) ) ) | 
						
							| 260 | 233 238 259 | 3eqtr3rd |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( ( ( c ` 0 ) + ( c ` 1 ) ) + ( c ` 2 ) ) = N ) | 
						
							| 261 | 243 245 | addcld |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( ( c ` 0 ) + ( c ` 1 ) ) e. CC ) | 
						
							| 262 | 101 | ad5antr |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> N e. CC ) | 
						
							| 263 | 261 249 262 | addrsub |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( ( ( ( c ` 0 ) + ( c ` 1 ) ) + ( c ` 2 ) ) = N <-> ( c ` 2 ) = ( N - ( ( c ` 0 ) + ( c ` 1 ) ) ) ) ) | 
						
							| 264 | 260 263 | mpbid |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( c ` 2 ) = ( N - ( ( c ` 0 ) + ( c ` 1 ) ) ) ) | 
						
							| 265 | 232 | sumeq1d |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> sum_ j e. ( 0 ..^ 3 ) ( n ` j ) = sum_ j e. { 0 , 1 , 2 } ( n ` j ) ) | 
						
							| 266 | 20 | ad4ant13 |  |-  ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) -> n e. ( NN ( repr ` 3 ) N ) ) | 
						
							| 267 | 266 | ad2antrr |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> n e. ( NN ( repr ` 3 ) N ) ) | 
						
							| 268 | 234 235 236 267 | reprsum |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> sum_ j e. ( 0 ..^ 3 ) ( n ` j ) = N ) | 
						
							| 269 |  | fveq2 |  |-  ( j = 0 -> ( n ` j ) = ( n ` 0 ) ) | 
						
							| 270 |  | fveq2 |  |-  ( j = 1 -> ( n ` j ) = ( n ` 1 ) ) | 
						
							| 271 |  | fveq2 |  |-  ( j = 2 -> ( n ` j ) = ( n ` 2 ) ) | 
						
							| 272 | 27 | nncnd |  |-  ( ( ph /\ n e. A ) -> ( n ` 0 ) e. CC ) | 
						
							| 273 | 272 | adantlr |  |-  ( ( ( ph /\ c e. A ) /\ n e. A ) -> ( n ` 0 ) e. CC ) | 
						
							| 274 | 273 | ad3antrrr |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( n ` 0 ) e. CC ) | 
						
							| 275 | 33 | nncnd |  |-  ( ( ph /\ n e. A ) -> ( n ` 1 ) e. CC ) | 
						
							| 276 | 275 | adantlr |  |-  ( ( ( ph /\ c e. A ) /\ n e. A ) -> ( n ` 1 ) e. CC ) | 
						
							| 277 | 276 | ad3antrrr |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( n ` 1 ) e. CC ) | 
						
							| 278 | 39 | nncnd |  |-  ( ( ph /\ n e. A ) -> ( n ` 2 ) e. CC ) | 
						
							| 279 | 278 | adantlr |  |-  ( ( ( ph /\ c e. A ) /\ n e. A ) -> ( n ` 2 ) e. CC ) | 
						
							| 280 | 279 | ad3antrrr |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( n ` 2 ) e. CC ) | 
						
							| 281 | 274 277 280 | 3jca |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( ( n ` 0 ) e. CC /\ ( n ` 1 ) e. CC /\ ( n ` 2 ) e. CC ) ) | 
						
							| 282 | 269 270 271 281 252 254 256 258 | sumtp |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> sum_ j e. { 0 , 1 , 2 } ( n ` j ) = ( ( ( n ` 0 ) + ( n ` 1 ) ) + ( n ` 2 ) ) ) | 
						
							| 283 | 265 268 282 | 3eqtr3rd |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( ( ( n ` 0 ) + ( n ` 1 ) ) + ( n ` 2 ) ) = N ) | 
						
							| 284 | 274 277 | addcld |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( ( n ` 0 ) + ( n ` 1 ) ) e. CC ) | 
						
							| 285 | 284 280 262 | addrsub |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( ( ( ( n ` 0 ) + ( n ` 1 ) ) + ( n ` 2 ) ) = N <-> ( n ` 2 ) = ( N - ( ( n ` 0 ) + ( n ` 1 ) ) ) ) ) | 
						
							| 286 | 283 285 | mpbid |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( n ` 2 ) = ( N - ( ( n ` 0 ) + ( n ` 1 ) ) ) ) | 
						
							| 287 | 231 264 286 | 3eqtr4d |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( c ` 2 ) = ( n ` 2 ) ) | 
						
							| 288 |  | simpr |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> i = 2 ) | 
						
							| 289 | 288 | fveq2d |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( c ` i ) = ( c ` 2 ) ) | 
						
							| 290 | 288 | fveq2d |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( n ` i ) = ( n ` 2 ) ) | 
						
							| 291 | 287 289 290 | 3eqtr4d |  |-  ( ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) /\ i = 2 ) -> ( c ` i ) = ( n ` i ) ) | 
						
							| 292 |  | simpr |  |-  ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) -> i e. ( 0 ..^ 3 ) ) | 
						
							| 293 | 292 24 | eleqtrdi |  |-  ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) -> i e. { 0 , 1 , 2 } ) | 
						
							| 294 |  | vex |  |-  i e. _V | 
						
							| 295 | 294 | eltp |  |-  ( i e. { 0 , 1 , 2 } <-> ( i = 0 \/ i = 1 \/ i = 2 ) ) | 
						
							| 296 | 293 295 | sylib |  |-  ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) -> ( i = 0 \/ i = 1 \/ i = 2 ) ) | 
						
							| 297 | 221 227 291 296 | mpjao3dan |  |-  ( ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) /\ i e. ( 0 ..^ 3 ) ) -> ( c ` i ) = ( n ` i ) ) | 
						
							| 298 | 196 198 297 | eqfnfvd |  |-  ( ( ( ( ph /\ c e. A ) /\ n e. A ) /\ ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) ) -> c = n ) | 
						
							| 299 | 298 | ex |  |-  ( ( ( ph /\ c e. A ) /\ n e. A ) -> ( ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) -> c = n ) ) | 
						
							| 300 | 299 | anasss |  |-  ( ( ph /\ ( c e. A /\ n e. A ) ) -> ( ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) -> c = n ) ) | 
						
							| 301 | 300 | ralrimivva |  |-  ( ph -> A. c e. A A. n e. A ( ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) -> c = n ) ) | 
						
							| 302 |  | dff1o6 |  |-  ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) : A -1-1-onto-> ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) <-> ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) Fn A /\ ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) = ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) /\ A. c e. A A. n e. A ( ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) -> c = n ) ) ) | 
						
							| 303 | 302 | biimpri |  |-  ( ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) Fn A /\ ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) = ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) /\ A. c e. A A. n e. A ( ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` c ) = ( ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ` n ) -> c = n ) ) -> ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) : A -1-1-onto-> ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ) | 
						
							| 304 | 193 194 301 303 | syl3anc |  |-  ( ph -> ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) : A -1-1-onto-> ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ) | 
						
							| 305 | 181 | sselda |  |-  ( ( ph /\ u e. ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ) -> u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ) | 
						
							| 306 | 305 125 | syldan |  |-  ( ( ph /\ u e. ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ) -> ( Lam ` ( 1st ` u ) ) e. RR ) | 
						
							| 307 | 305 129 | syldan |  |-  ( ( ph /\ u e. ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ) -> ( Lam ` ( 2nd ` u ) ) e. RR ) | 
						
							| 308 | 306 307 | remulcld |  |-  ( ( ph /\ u e. ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ) -> ( ( Lam ` ( 1st ` u ) ) x. ( Lam ` ( 2nd ` u ) ) ) e. RR ) | 
						
							| 309 | 308 | recnd |  |-  ( ( ph /\ u e. ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ) -> ( ( Lam ` ( 1st ` u ) ) x. ( Lam ` ( 2nd ` u ) ) ) e. CC ) | 
						
							| 310 | 189 12 304 210 309 | fsumf1o |  |-  ( ph -> sum_ u e. ran ( d e. A |-> <. ( d ` 0 ) , ( d ` 1 ) >. ) ( ( Lam ` ( 1st ` u ) ) x. ( Lam ` ( 2nd ` u ) ) ) = sum_ n e. A ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) ) | 
						
							| 311 | 76 | recnd |  |-  ( ph -> sum_ j e. ( 1 ... N ) ( Lam ` j ) e. CC ) | 
						
							| 312 | 70 | recnd |  |-  ( ( ph /\ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) -> ( Lam ` i ) e. CC ) | 
						
							| 313 | 55 311 312 | fsummulc1 |  |-  ( ph -> ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) = sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) | 
						
							| 314 | 49 | a1i |  |-  ( ( ph /\ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) -> ( 1 ... N ) e. Fin ) | 
						
							| 315 | 75 | adantrl |  |-  ( ( ph /\ ( i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) /\ j e. ( 1 ... N ) ) ) -> ( Lam ` j ) e. RR ) | 
						
							| 316 | 315 | anassrs |  |-  ( ( ( ph /\ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) /\ j e. ( 1 ... N ) ) -> ( Lam ` j ) e. RR ) | 
						
							| 317 | 316 | recnd |  |-  ( ( ( ph /\ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) /\ j e. ( 1 ... N ) ) -> ( Lam ` j ) e. CC ) | 
						
							| 318 | 314 312 317 | fsummulc2 |  |-  ( ( ph /\ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ) -> ( ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) = sum_ j e. ( 1 ... N ) ( ( Lam ` i ) x. ( Lam ` j ) ) ) | 
						
							| 319 | 318 | sumeq2dv |  |-  ( ph -> sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) = sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) sum_ j e. ( 1 ... N ) ( ( Lam ` i ) x. ( Lam ` j ) ) ) | 
						
							| 320 |  | vex |  |-  j e. _V | 
						
							| 321 | 294 320 | op1std |  |-  ( u = <. i , j >. -> ( 1st ` u ) = i ) | 
						
							| 322 | 321 | fveq2d |  |-  ( u = <. i , j >. -> ( Lam ` ( 1st ` u ) ) = ( Lam ` i ) ) | 
						
							| 323 | 294 320 | op2ndd |  |-  ( u = <. i , j >. -> ( 2nd ` u ) = j ) | 
						
							| 324 | 323 | fveq2d |  |-  ( u = <. i , j >. -> ( Lam ` ( 2nd ` u ) ) = ( Lam ` j ) ) | 
						
							| 325 | 322 324 | oveq12d |  |-  ( u = <. i , j >. -> ( ( Lam ` ( 1st ` u ) ) x. ( Lam ` ( 2nd ` u ) ) ) = ( ( Lam ` i ) x. ( Lam ` j ) ) ) | 
						
							| 326 | 70 | adantrr |  |-  ( ( ph /\ ( i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) /\ j e. ( 1 ... N ) ) ) -> ( Lam ` i ) e. RR ) | 
						
							| 327 | 326 315 | remulcld |  |-  ( ( ph /\ ( i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) /\ j e. ( 1 ... N ) ) ) -> ( ( Lam ` i ) x. ( Lam ` j ) ) e. RR ) | 
						
							| 328 | 327 | recnd |  |-  ( ( ph /\ ( i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) /\ j e. ( 1 ... N ) ) ) -> ( ( Lam ` i ) x. ( Lam ` j ) ) e. CC ) | 
						
							| 329 | 325 55 72 328 | fsumxp |  |-  ( ph -> sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) sum_ j e. ( 1 ... N ) ( ( Lam ` i ) x. ( Lam ` j ) ) = sum_ u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ( ( Lam ` ( 1st ` u ) ) x. ( Lam ` ( 2nd ` u ) ) ) ) | 
						
							| 330 | 313 319 329 | 3eqtrrd |  |-  ( ph -> sum_ u e. ( ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) X. ( 1 ... N ) ) ( ( Lam ` ( 1st ` u ) ) x. ( Lam ` ( 2nd ` u ) ) ) = ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) | 
						
							| 331 | 182 310 330 | 3brtr3d |  |-  ( ph -> sum_ n e. A ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) <_ ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) | 
						
							| 332 | 47 77 45 117 331 | lemul2ad |  |-  ( ph -> ( ( log ` N ) x. sum_ n e. A ( ( Lam ` ( n ` 0 ) ) x. ( Lam ` ( n ` 1 ) ) ) ) <_ ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) | 
						
							| 333 | 43 48 78 114 332 | letrd |  |-  ( ph -> sum_ n e. A ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) <_ ( ( log ` N ) x. ( sum_ i e. ( ( ( 1 ... N ) \ Prime ) u. { 2 } ) ( Lam ` i ) x. sum_ j e. ( 1 ... N ) ( Lam ` j ) ) ) ) |