| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgt750leme.o | ⊢ 𝑂  =  { 𝑧  ∈  ℤ  ∣  ¬  2  ∥  𝑧 } | 
						
							| 2 |  | ancom | ⊢ ( ( 𝑧  ∈  𝑂  ∧  𝑧  ∈  ℙ )  ↔  ( 𝑧  ∈  ℙ  ∧  𝑧  ∈  𝑂 ) ) | 
						
							| 3 |  | prmz | ⊢ ( 𝑧  ∈  ℙ  →  𝑧  ∈  ℤ ) | 
						
							| 4 | 1 | reqabi | ⊢ ( 𝑧  ∈  𝑂  ↔  ( 𝑧  ∈  ℤ  ∧  ¬  2  ∥  𝑧 ) ) | 
						
							| 5 | 4 | baib | ⊢ ( 𝑧  ∈  ℤ  →  ( 𝑧  ∈  𝑂  ↔  ¬  2  ∥  𝑧 ) ) | 
						
							| 6 | 3 5 | syl | ⊢ ( 𝑧  ∈  ℙ  →  ( 𝑧  ∈  𝑂  ↔  ¬  2  ∥  𝑧 ) ) | 
						
							| 7 | 6 | pm5.32i | ⊢ ( ( 𝑧  ∈  ℙ  ∧  𝑧  ∈  𝑂 )  ↔  ( 𝑧  ∈  ℙ  ∧  ¬  2  ∥  𝑧 ) ) | 
						
							| 8 | 2 7 | bitr2i | ⊢ ( ( 𝑧  ∈  ℙ  ∧  ¬  2  ∥  𝑧 )  ↔  ( 𝑧  ∈  𝑂  ∧  𝑧  ∈  ℙ ) ) | 
						
							| 9 |  | nnoddn2prmb | ⊢ ( 𝑧  ∈  ( ℙ  ∖  { 2 } )  ↔  ( 𝑧  ∈  ℙ  ∧  ¬  2  ∥  𝑧 ) ) | 
						
							| 10 |  | elin | ⊢ ( 𝑧  ∈  ( 𝑂  ∩  ℙ )  ↔  ( 𝑧  ∈  𝑂  ∧  𝑧  ∈  ℙ ) ) | 
						
							| 11 | 8 9 10 | 3bitr4i | ⊢ ( 𝑧  ∈  ( ℙ  ∖  { 2 } )  ↔  𝑧  ∈  ( 𝑂  ∩  ℙ ) ) | 
						
							| 12 | 11 | eqriv | ⊢ ( ℙ  ∖  { 2 } )  =  ( 𝑂  ∩  ℙ ) |