| Step |
Hyp |
Ref |
Expression |
| 1 |
|
circlemethhgt.h |
|- ( ph -> H : NN --> RR ) |
| 2 |
|
circlemethhgt.k |
|- ( ph -> K : NN --> RR ) |
| 3 |
|
circlemethhgt.n |
|- ( ph -> N e. NN0 ) |
| 4 |
|
3nn |
|- 3 e. NN |
| 5 |
4
|
a1i |
|- ( ph -> 3 e. NN ) |
| 6 |
|
s3len |
|- ( # ` <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ) = 3 |
| 7 |
6
|
eqcomi |
|- 3 = ( # ` <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ) |
| 8 |
7
|
a1i |
|- ( ph -> 3 = ( # ` <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ) ) |
| 9 |
|
simprl |
|- ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> x e. RR ) |
| 10 |
|
simprr |
|- ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> y e. RR ) |
| 11 |
9 10
|
remulcld |
|- ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> ( x x. y ) e. RR ) |
| 12 |
11
|
recnd |
|- ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> ( x x. y ) e. CC ) |
| 13 |
|
vmaf |
|- Lam : NN --> RR |
| 14 |
13
|
a1i |
|- ( ph -> Lam : NN --> RR ) |
| 15 |
|
nnex |
|- NN e. _V |
| 16 |
15
|
a1i |
|- ( ph -> NN e. _V ) |
| 17 |
|
inidm |
|- ( NN i^i NN ) = NN |
| 18 |
12 14 1 16 16 17
|
off |
|- ( ph -> ( Lam oF x. H ) : NN --> CC ) |
| 19 |
|
cnex |
|- CC e. _V |
| 20 |
19 15
|
elmap |
|- ( ( Lam oF x. H ) e. ( CC ^m NN ) <-> ( Lam oF x. H ) : NN --> CC ) |
| 21 |
18 20
|
sylibr |
|- ( ph -> ( Lam oF x. H ) e. ( CC ^m NN ) ) |
| 22 |
12 14 2 16 16 17
|
off |
|- ( ph -> ( Lam oF x. K ) : NN --> CC ) |
| 23 |
19 15
|
elmap |
|- ( ( Lam oF x. K ) e. ( CC ^m NN ) <-> ( Lam oF x. K ) : NN --> CC ) |
| 24 |
22 23
|
sylibr |
|- ( ph -> ( Lam oF x. K ) e. ( CC ^m NN ) ) |
| 25 |
21 24 24
|
s3cld |
|- ( ph -> <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> e. Word ( CC ^m NN ) ) |
| 26 |
8 25
|
wrdfd |
|- ( ph -> <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> : ( 0 ..^ 3 ) --> ( CC ^m NN ) ) |
| 27 |
3 5 26
|
circlemeth |
|- ( ph -> sum_ n e. ( NN ( repr ` 3 ) N ) prod_ a e. ( 0 ..^ 3 ) ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) ` ( n ` a ) ) = S. ( 0 (,) 1 ) ( prod_ a e. ( 0 ..^ 3 ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x ) |
| 28 |
|
fveq2 |
|- ( a = 0 -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 0 ) ) |
| 29 |
|
fveq2 |
|- ( a = 0 -> ( n ` a ) = ( n ` 0 ) ) |
| 30 |
28 29
|
fveq12d |
|- ( a = 0 -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) ` ( n ` a ) ) = ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 0 ) ` ( n ` 0 ) ) ) |
| 31 |
|
fveq2 |
|- ( a = 1 -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) ) |
| 32 |
|
fveq2 |
|- ( a = 1 -> ( n ` a ) = ( n ` 1 ) ) |
| 33 |
31 32
|
fveq12d |
|- ( a = 1 -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) ` ( n ` a ) ) = ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) ` ( n ` 1 ) ) ) |
| 34 |
|
fveq2 |
|- ( a = 2 -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) ) |
| 35 |
|
fveq2 |
|- ( a = 2 -> ( n ` a ) = ( n ` 2 ) ) |
| 36 |
34 35
|
fveq12d |
|- ( a = 2 -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) ` ( n ` a ) ) = ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) ` ( n ` 2 ) ) ) |
| 37 |
26
|
adantr |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> : ( 0 ..^ 3 ) --> ( CC ^m NN ) ) |
| 38 |
37
|
ffvelcdmda |
|- ( ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) /\ a e. ( 0 ..^ 3 ) ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) e. ( CC ^m NN ) ) |
| 39 |
|
elmapi |
|- ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) e. ( CC ^m NN ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) : NN --> CC ) |
| 40 |
38 39
|
syl |
|- ( ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) /\ a e. ( 0 ..^ 3 ) ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) : NN --> CC ) |
| 41 |
|
ssidd |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> NN C_ NN ) |
| 42 |
3
|
nn0zd |
|- ( ph -> N e. ZZ ) |
| 43 |
42
|
adantr |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> N e. ZZ ) |
| 44 |
|
3nn0 |
|- 3 e. NN0 |
| 45 |
44
|
a1i |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> 3 e. NN0 ) |
| 46 |
|
simpr |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> n e. ( NN ( repr ` 3 ) N ) ) |
| 47 |
41 43 45 46
|
reprf |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> n : ( 0 ..^ 3 ) --> NN ) |
| 48 |
47
|
ffvelcdmda |
|- ( ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) /\ a e. ( 0 ..^ 3 ) ) -> ( n ` a ) e. NN ) |
| 49 |
40 48
|
ffvelcdmd |
|- ( ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) /\ a e. ( 0 ..^ 3 ) ) -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) ` ( n ` a ) ) e. CC ) |
| 50 |
30 33 36 49
|
prodfzo03 |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> prod_ a e. ( 0 ..^ 3 ) ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) ` ( n ` a ) ) = ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 0 ) ` ( n ` 0 ) ) x. ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) ` ( n ` 1 ) ) x. ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) ` ( n ` 2 ) ) ) ) ) |
| 51 |
|
ovex |
|- ( Lam oF x. H ) e. _V |
| 52 |
|
s3fv0 |
|- ( ( Lam oF x. H ) e. _V -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 0 ) = ( Lam oF x. H ) ) |
| 53 |
51 52
|
mp1i |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 0 ) = ( Lam oF x. H ) ) |
| 54 |
53
|
fveq1d |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 0 ) ` ( n ` 0 ) ) = ( ( Lam oF x. H ) ` ( n ` 0 ) ) ) |
| 55 |
|
simpl |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ph ) |
| 56 |
|
c0ex |
|- 0 e. _V |
| 57 |
56
|
tpid1 |
|- 0 e. { 0 , 1 , 2 } |
| 58 |
|
fzo0to3tp |
|- ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
| 59 |
57 58
|
eleqtrri |
|- 0 e. ( 0 ..^ 3 ) |
| 60 |
59
|
a1i |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> 0 e. ( 0 ..^ 3 ) ) |
| 61 |
47 60
|
ffvelcdmd |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( n ` 0 ) e. NN ) |
| 62 |
|
ffn |
|- ( Lam : NN --> RR -> Lam Fn NN ) |
| 63 |
13 62
|
ax-mp |
|- Lam Fn NN |
| 64 |
63
|
a1i |
|- ( ph -> Lam Fn NN ) |
| 65 |
1
|
ffnd |
|- ( ph -> H Fn NN ) |
| 66 |
|
eqidd |
|- ( ( ph /\ ( n ` 0 ) e. NN ) -> ( Lam ` ( n ` 0 ) ) = ( Lam ` ( n ` 0 ) ) ) |
| 67 |
|
eqidd |
|- ( ( ph /\ ( n ` 0 ) e. NN ) -> ( H ` ( n ` 0 ) ) = ( H ` ( n ` 0 ) ) ) |
| 68 |
64 65 16 16 17 66 67
|
ofval |
|- ( ( ph /\ ( n ` 0 ) e. NN ) -> ( ( Lam oF x. H ) ` ( n ` 0 ) ) = ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) ) |
| 69 |
55 61 68
|
syl2anc |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( Lam oF x. H ) ` ( n ` 0 ) ) = ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) ) |
| 70 |
54 69
|
eqtrd |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 0 ) ` ( n ` 0 ) ) = ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) ) |
| 71 |
|
ovex |
|- ( Lam oF x. K ) e. _V |
| 72 |
|
s3fv1 |
|- ( ( Lam oF x. K ) e. _V -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) = ( Lam oF x. K ) ) |
| 73 |
71 72
|
mp1i |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) = ( Lam oF x. K ) ) |
| 74 |
73
|
fveq1d |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) ` ( n ` 1 ) ) = ( ( Lam oF x. K ) ` ( n ` 1 ) ) ) |
| 75 |
|
1ex |
|- 1 e. _V |
| 76 |
75
|
tpid2 |
|- 1 e. { 0 , 1 , 2 } |
| 77 |
76 58
|
eleqtrri |
|- 1 e. ( 0 ..^ 3 ) |
| 78 |
77
|
a1i |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> 1 e. ( 0 ..^ 3 ) ) |
| 79 |
47 78
|
ffvelcdmd |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( n ` 1 ) e. NN ) |
| 80 |
2
|
ffnd |
|- ( ph -> K Fn NN ) |
| 81 |
|
eqidd |
|- ( ( ph /\ ( n ` 1 ) e. NN ) -> ( Lam ` ( n ` 1 ) ) = ( Lam ` ( n ` 1 ) ) ) |
| 82 |
|
eqidd |
|- ( ( ph /\ ( n ` 1 ) e. NN ) -> ( K ` ( n ` 1 ) ) = ( K ` ( n ` 1 ) ) ) |
| 83 |
64 80 16 16 17 81 82
|
ofval |
|- ( ( ph /\ ( n ` 1 ) e. NN ) -> ( ( Lam oF x. K ) ` ( n ` 1 ) ) = ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) ) |
| 84 |
55 79 83
|
syl2anc |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( Lam oF x. K ) ` ( n ` 1 ) ) = ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) ) |
| 85 |
74 84
|
eqtrd |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) ` ( n ` 1 ) ) = ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) ) |
| 86 |
|
s3fv2 |
|- ( ( Lam oF x. K ) e. _V -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) = ( Lam oF x. K ) ) |
| 87 |
71 86
|
mp1i |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) = ( Lam oF x. K ) ) |
| 88 |
87
|
fveq1d |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) ` ( n ` 2 ) ) = ( ( Lam oF x. K ) ` ( n ` 2 ) ) ) |
| 89 |
|
2ex |
|- 2 e. _V |
| 90 |
89
|
tpid3 |
|- 2 e. { 0 , 1 , 2 } |
| 91 |
90 58
|
eleqtrri |
|- 2 e. ( 0 ..^ 3 ) |
| 92 |
91
|
a1i |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> 2 e. ( 0 ..^ 3 ) ) |
| 93 |
47 92
|
ffvelcdmd |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( n ` 2 ) e. NN ) |
| 94 |
|
eqidd |
|- ( ( ph /\ ( n ` 2 ) e. NN ) -> ( Lam ` ( n ` 2 ) ) = ( Lam ` ( n ` 2 ) ) ) |
| 95 |
|
eqidd |
|- ( ( ph /\ ( n ` 2 ) e. NN ) -> ( K ` ( n ` 2 ) ) = ( K ` ( n ` 2 ) ) ) |
| 96 |
64 80 16 16 17 94 95
|
ofval |
|- ( ( ph /\ ( n ` 2 ) e. NN ) -> ( ( Lam oF x. K ) ` ( n ` 2 ) ) = ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) |
| 97 |
55 93 96
|
syl2anc |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( Lam oF x. K ) ` ( n ` 2 ) ) = ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) |
| 98 |
88 97
|
eqtrd |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) ` ( n ` 2 ) ) = ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) |
| 99 |
85 98
|
oveq12d |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) ` ( n ` 1 ) ) x. ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) ` ( n ` 2 ) ) ) = ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) |
| 100 |
70 99
|
oveq12d |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 0 ) ` ( n ` 0 ) ) x. ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) ` ( n ` 1 ) ) x. ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) ` ( n ` 2 ) ) ) ) = ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) ) |
| 101 |
50 100
|
eqtrd |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> prod_ a e. ( 0 ..^ 3 ) ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) ` ( n ` a ) ) = ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) ) |
| 102 |
101
|
sumeq2dv |
|- ( ph -> sum_ n e. ( NN ( repr ` 3 ) N ) prod_ a e. ( 0 ..^ 3 ) ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) ` ( n ` a ) ) = sum_ n e. ( NN ( repr ` 3 ) N ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) ) |
| 103 |
|
nfv |
|- F/ a ( ph /\ x e. ( 0 (,) 1 ) ) |
| 104 |
|
nfcv |
|- F/_ a ( ( ( Lam oF x. H ) vts N ) ` x ) |
| 105 |
|
fzofi |
|- ( 1 ..^ 3 ) e. Fin |
| 106 |
105
|
a1i |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( 1 ..^ 3 ) e. Fin ) |
| 107 |
56
|
a1i |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> 0 e. _V ) |
| 108 |
|
eqid |
|- 0 = 0 |
| 109 |
108
|
orci |
|- ( 0 = 0 \/ 0 = 3 ) |
| 110 |
|
0elfz |
|- ( 3 e. NN0 -> 0 e. ( 0 ... 3 ) ) |
| 111 |
|
elfznelfzob |
|- ( 0 e. ( 0 ... 3 ) -> ( -. 0 e. ( 1 ..^ 3 ) <-> ( 0 = 0 \/ 0 = 3 ) ) ) |
| 112 |
44 110 111
|
mp2b |
|- ( -. 0 e. ( 1 ..^ 3 ) <-> ( 0 = 0 \/ 0 = 3 ) ) |
| 113 |
109 112
|
mpbir |
|- -. 0 e. ( 1 ..^ 3 ) |
| 114 |
113
|
a1i |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> -. 0 e. ( 1 ..^ 3 ) ) |
| 115 |
3
|
ad2antrr |
|- ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 1 ..^ 3 ) ) -> N e. NN0 ) |
| 116 |
|
ioossre |
|- ( 0 (,) 1 ) C_ RR |
| 117 |
|
ax-resscn |
|- RR C_ CC |
| 118 |
116 117
|
sstri |
|- ( 0 (,) 1 ) C_ CC |
| 119 |
118
|
a1i |
|- ( ph -> ( 0 (,) 1 ) C_ CC ) |
| 120 |
119
|
sselda |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> x e. CC ) |
| 121 |
120
|
adantr |
|- ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 1 ..^ 3 ) ) -> x e. CC ) |
| 122 |
26
|
ad2antrr |
|- ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 1 ..^ 3 ) ) -> <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> : ( 0 ..^ 3 ) --> ( CC ^m NN ) ) |
| 123 |
|
fzo0ss1 |
|- ( 1 ..^ 3 ) C_ ( 0 ..^ 3 ) |
| 124 |
123
|
a1i |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( 1 ..^ 3 ) C_ ( 0 ..^ 3 ) ) |
| 125 |
124
|
sselda |
|- ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 1 ..^ 3 ) ) -> a e. ( 0 ..^ 3 ) ) |
| 126 |
122 125
|
ffvelcdmd |
|- ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 1 ..^ 3 ) ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) e. ( CC ^m NN ) ) |
| 127 |
126 39
|
syl |
|- ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 1 ..^ 3 ) ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) : NN --> CC ) |
| 128 |
115 121 127
|
vtscl |
|- ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 1 ..^ 3 ) ) -> ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) e. CC ) |
| 129 |
51 52
|
ax-mp |
|- ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 0 ) = ( Lam oF x. H ) |
| 130 |
28 129
|
eqtrdi |
|- ( a = 0 -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( Lam oF x. H ) ) |
| 131 |
130
|
oveq1d |
|- ( a = 0 -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) = ( ( Lam oF x. H ) vts N ) ) |
| 132 |
131
|
fveq1d |
|- ( a = 0 -> ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) = ( ( ( Lam oF x. H ) vts N ) ` x ) ) |
| 133 |
3
|
adantr |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> N e. NN0 ) |
| 134 |
18
|
adantr |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( Lam oF x. H ) : NN --> CC ) |
| 135 |
133 120 134
|
vtscl |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( ( ( Lam oF x. H ) vts N ) ` x ) e. CC ) |
| 136 |
103 104 106 107 114 128 132 135
|
fprodsplitsn |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> prod_ a e. ( ( 1 ..^ 3 ) u. { 0 } ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) = ( prod_ a e. ( 1 ..^ 3 ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) x. ( ( ( Lam oF x. H ) vts N ) ` x ) ) ) |
| 137 |
|
uncom |
|- ( ( 1 ..^ 3 ) u. { 0 } ) = ( { 0 } u. ( 1 ..^ 3 ) ) |
| 138 |
|
fzo0sn0fzo1 |
|- ( 3 e. NN -> ( 0 ..^ 3 ) = ( { 0 } u. ( 1 ..^ 3 ) ) ) |
| 139 |
4 138
|
ax-mp |
|- ( 0 ..^ 3 ) = ( { 0 } u. ( 1 ..^ 3 ) ) |
| 140 |
137 139
|
eqtr4i |
|- ( ( 1 ..^ 3 ) u. { 0 } ) = ( 0 ..^ 3 ) |
| 141 |
140
|
a1i |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( ( 1 ..^ 3 ) u. { 0 } ) = ( 0 ..^ 3 ) ) |
| 142 |
141
|
prodeq1d |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> prod_ a e. ( ( 1 ..^ 3 ) u. { 0 } ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) = prod_ a e. ( 0 ..^ 3 ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) ) |
| 143 |
|
fzo13pr |
|- ( 1 ..^ 3 ) = { 1 , 2 } |
| 144 |
143
|
eleq2i |
|- ( a e. ( 1 ..^ 3 ) <-> a e. { 1 , 2 } ) |
| 145 |
|
vex |
|- a e. _V |
| 146 |
145
|
elpr |
|- ( a e. { 1 , 2 } <-> ( a = 1 \/ a = 2 ) ) |
| 147 |
144 146
|
bitri |
|- ( a e. ( 1 ..^ 3 ) <-> ( a = 1 \/ a = 2 ) ) |
| 148 |
31
|
adantl |
|- ( ( ph /\ a = 1 ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) ) |
| 149 |
71 72
|
mp1i |
|- ( ( ph /\ a = 1 ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) = ( Lam oF x. K ) ) |
| 150 |
148 149
|
eqtrd |
|- ( ( ph /\ a = 1 ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( Lam oF x. K ) ) |
| 151 |
34
|
adantl |
|- ( ( ph /\ a = 2 ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) ) |
| 152 |
71 86
|
mp1i |
|- ( ( ph /\ a = 2 ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) = ( Lam oF x. K ) ) |
| 153 |
151 152
|
eqtrd |
|- ( ( ph /\ a = 2 ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( Lam oF x. K ) ) |
| 154 |
150 153
|
jaodan |
|- ( ( ph /\ ( a = 1 \/ a = 2 ) ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( Lam oF x. K ) ) |
| 155 |
147 154
|
sylan2b |
|- ( ( ph /\ a e. ( 1 ..^ 3 ) ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( Lam oF x. K ) ) |
| 156 |
155
|
adantlr |
|- ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 1 ..^ 3 ) ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( Lam oF x. K ) ) |
| 157 |
156
|
oveq1d |
|- ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 1 ..^ 3 ) ) -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) = ( ( Lam oF x. K ) vts N ) ) |
| 158 |
157
|
fveq1d |
|- ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 1 ..^ 3 ) ) -> ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) = ( ( ( Lam oF x. K ) vts N ) ` x ) ) |
| 159 |
158
|
prodeq2dv |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> prod_ a e. ( 1 ..^ 3 ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) = prod_ a e. ( 1 ..^ 3 ) ( ( ( Lam oF x. K ) vts N ) ` x ) ) |
| 160 |
22
|
adantr |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( Lam oF x. K ) : NN --> CC ) |
| 161 |
133 120 160
|
vtscl |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( ( ( Lam oF x. K ) vts N ) ` x ) e. CC ) |
| 162 |
|
fprodconst |
|- ( ( ( 1 ..^ 3 ) e. Fin /\ ( ( ( Lam oF x. K ) vts N ) ` x ) e. CC ) -> prod_ a e. ( 1 ..^ 3 ) ( ( ( Lam oF x. K ) vts N ) ` x ) = ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ ( # ` ( 1 ..^ 3 ) ) ) ) |
| 163 |
106 161 162
|
syl2anc |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> prod_ a e. ( 1 ..^ 3 ) ( ( ( Lam oF x. K ) vts N ) ` x ) = ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ ( # ` ( 1 ..^ 3 ) ) ) ) |
| 164 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 165 |
4 164
|
eleqtri |
|- 3 e. ( ZZ>= ` 1 ) |
| 166 |
|
hashfzo |
|- ( 3 e. ( ZZ>= ` 1 ) -> ( # ` ( 1 ..^ 3 ) ) = ( 3 - 1 ) ) |
| 167 |
165 166
|
ax-mp |
|- ( # ` ( 1 ..^ 3 ) ) = ( 3 - 1 ) |
| 168 |
|
3m1e2 |
|- ( 3 - 1 ) = 2 |
| 169 |
167 168
|
eqtri |
|- ( # ` ( 1 ..^ 3 ) ) = 2 |
| 170 |
169
|
a1i |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( # ` ( 1 ..^ 3 ) ) = 2 ) |
| 171 |
170
|
oveq2d |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ ( # ` ( 1 ..^ 3 ) ) ) = ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) ) |
| 172 |
159 163 171
|
3eqtrd |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> prod_ a e. ( 1 ..^ 3 ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) = ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) ) |
| 173 |
172
|
oveq1d |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( prod_ a e. ( 1 ..^ 3 ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) x. ( ( ( Lam oF x. H ) vts N ) ` x ) ) = ( ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) x. ( ( ( Lam oF x. H ) vts N ) ` x ) ) ) |
| 174 |
161
|
sqcld |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) e. CC ) |
| 175 |
135 174
|
mulcomd |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( ( ( ( Lam oF x. H ) vts N ) ` x ) x. ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) ) = ( ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) x. ( ( ( Lam oF x. H ) vts N ) ` x ) ) ) |
| 176 |
173 175
|
eqtr4d |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( prod_ a e. ( 1 ..^ 3 ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) x. ( ( ( Lam oF x. H ) vts N ) ` x ) ) = ( ( ( ( Lam oF x. H ) vts N ) ` x ) x. ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) ) ) |
| 177 |
136 142 176
|
3eqtr3d |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> prod_ a e. ( 0 ..^ 3 ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) = ( ( ( ( Lam oF x. H ) vts N ) ` x ) x. ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) ) ) |
| 178 |
177
|
oveq1d |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( prod_ a e. ( 0 ..^ 3 ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) = ( ( ( ( ( Lam oF x. H ) vts N ) ` x ) x. ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) ) |
| 179 |
178
|
itgeq2dv |
|- ( ph -> S. ( 0 (,) 1 ) ( prod_ a e. ( 0 ..^ 3 ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x = S. ( 0 (,) 1 ) ( ( ( ( ( Lam oF x. H ) vts N ) ` x ) x. ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x ) |
| 180 |
27 102 179
|
3eqtr3d |
|- ( ph -> sum_ n e. ( NN ( repr ` 3 ) N ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) = S. ( 0 (,) 1 ) ( ( ( ( ( Lam oF x. H ) vts N ) ` x ) x. ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x ) |