| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trgcopy.p |
|- P = ( Base ` G ) |
| 2 |
|
trgcopy.m |
|- .- = ( dist ` G ) |
| 3 |
|
trgcopy.i |
|- I = ( Itv ` G ) |
| 4 |
|
trgcopy.l |
|- L = ( LineG ` G ) |
| 5 |
|
trgcopy.k |
|- K = ( hlG ` G ) |
| 6 |
|
trgcopy.g |
|- ( ph -> G e. TarskiG ) |
| 7 |
|
trgcopy.a |
|- ( ph -> A e. P ) |
| 8 |
|
trgcopy.b |
|- ( ph -> B e. P ) |
| 9 |
|
trgcopy.c |
|- ( ph -> C e. P ) |
| 10 |
|
trgcopy.d |
|- ( ph -> D e. P ) |
| 11 |
|
trgcopy.e |
|- ( ph -> E e. P ) |
| 12 |
|
trgcopy.f |
|- ( ph -> F e. P ) |
| 13 |
|
trgcopy.1 |
|- ( ph -> -. ( A e. ( B L C ) \/ B = C ) ) |
| 14 |
|
trgcopy.2 |
|- ( ph -> -. ( D e. ( E L F ) \/ E = F ) ) |
| 15 |
|
trgcopy.3 |
|- ( ph -> ( A .- B ) = ( D .- E ) ) |
| 16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
trgcopy |
|- ( ph -> E. f e. P ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) |
| 17 |
6
|
ad5antr |
|- ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> G e. TarskiG ) |
| 18 |
7
|
ad5antr |
|- ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> A e. P ) |
| 19 |
8
|
ad5antr |
|- ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> B e. P ) |
| 20 |
9
|
ad5antr |
|- ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> C e. P ) |
| 21 |
10
|
ad5antr |
|- ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> D e. P ) |
| 22 |
11
|
ad5antr |
|- ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> E e. P ) |
| 23 |
12
|
ad5antr |
|- ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> F e. P ) |
| 24 |
13
|
ad5antr |
|- ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> -. ( A e. ( B L C ) \/ B = C ) ) |
| 25 |
14
|
ad5antr |
|- ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> -. ( D e. ( E L F ) \/ E = F ) ) |
| 26 |
15
|
ad5antr |
|- ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> ( A .- B ) = ( D .- E ) ) |
| 27 |
|
simpl |
|- ( ( x = a /\ y = b ) -> x = a ) |
| 28 |
27
|
eleq1d |
|- ( ( x = a /\ y = b ) -> ( x e. ( P \ ( D L E ) ) <-> a e. ( P \ ( D L E ) ) ) ) |
| 29 |
|
simpr |
|- ( ( x = a /\ y = b ) -> y = b ) |
| 30 |
29
|
eleq1d |
|- ( ( x = a /\ y = b ) -> ( y e. ( P \ ( D L E ) ) <-> b e. ( P \ ( D L E ) ) ) ) |
| 31 |
28 30
|
anbi12d |
|- ( ( x = a /\ y = b ) -> ( ( x e. ( P \ ( D L E ) ) /\ y e. ( P \ ( D L E ) ) ) <-> ( a e. ( P \ ( D L E ) ) /\ b e. ( P \ ( D L E ) ) ) ) ) |
| 32 |
|
simpr |
|- ( ( ( x = a /\ y = b ) /\ z = t ) -> z = t ) |
| 33 |
|
simpll |
|- ( ( ( x = a /\ y = b ) /\ z = t ) -> x = a ) |
| 34 |
|
simplr |
|- ( ( ( x = a /\ y = b ) /\ z = t ) -> y = b ) |
| 35 |
33 34
|
oveq12d |
|- ( ( ( x = a /\ y = b ) /\ z = t ) -> ( x I y ) = ( a I b ) ) |
| 36 |
32 35
|
eleq12d |
|- ( ( ( x = a /\ y = b ) /\ z = t ) -> ( z e. ( x I y ) <-> t e. ( a I b ) ) ) |
| 37 |
36
|
cbvrexdva |
|- ( ( x = a /\ y = b ) -> ( E. z e. ( D L E ) z e. ( x I y ) <-> E. t e. ( D L E ) t e. ( a I b ) ) ) |
| 38 |
31 37
|
anbi12d |
|- ( ( x = a /\ y = b ) -> ( ( ( x e. ( P \ ( D L E ) ) /\ y e. ( P \ ( D L E ) ) ) /\ E. z e. ( D L E ) z e. ( x I y ) ) <-> ( ( a e. ( P \ ( D L E ) ) /\ b e. ( P \ ( D L E ) ) ) /\ E. t e. ( D L E ) t e. ( a I b ) ) ) ) |
| 39 |
38
|
cbvopabv |
|- { <. x , y >. | ( ( x e. ( P \ ( D L E ) ) /\ y e. ( P \ ( D L E ) ) ) /\ E. z e. ( D L E ) z e. ( x I y ) ) } = { <. a , b >. | ( ( a e. ( P \ ( D L E ) ) /\ b e. ( P \ ( D L E ) ) ) /\ E. t e. ( D L E ) t e. ( a I b ) ) } |
| 40 |
|
simp-5r |
|- ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> f e. P ) |
| 41 |
|
simp-4r |
|- ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> k e. P ) |
| 42 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) |
| 43 |
42
|
simpld |
|- ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> <" A B C "> ( cgrG ` G ) <" D E f "> ) |
| 44 |
|
simplr |
|- ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> <" A B C "> ( cgrG ` G ) <" D E k "> ) |
| 45 |
42
|
simprd |
|- ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> f ( ( hpG ` G ) ` ( D L E ) ) F ) |
| 46 |
|
simpr |
|- ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> k ( ( hpG ` G ) ` ( D L E ) ) F ) |
| 47 |
1 2 3 4 5 17 18 19 20 21 22 23 24 25 26 39 40 41 43 44 45 46
|
trgcopyeulem |
|- ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> f = k ) |
| 48 |
47
|
anasss |
|- ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ ( <" A B C "> ( cgrG ` G ) <" D E k "> /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) ) -> f = k ) |
| 49 |
48
|
expl |
|- ( ( ( ph /\ f e. P ) /\ k e. P ) -> ( ( ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) /\ ( <" A B C "> ( cgrG ` G ) <" D E k "> /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) ) -> f = k ) ) |
| 50 |
49
|
anasss |
|- ( ( ph /\ ( f e. P /\ k e. P ) ) -> ( ( ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) /\ ( <" A B C "> ( cgrG ` G ) <" D E k "> /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) ) -> f = k ) ) |
| 51 |
50
|
ralrimivva |
|- ( ph -> A. f e. P A. k e. P ( ( ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) /\ ( <" A B C "> ( cgrG ` G ) <" D E k "> /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) ) -> f = k ) ) |
| 52 |
|
eqidd |
|- ( f = k -> D = D ) |
| 53 |
|
eqidd |
|- ( f = k -> E = E ) |
| 54 |
|
id |
|- ( f = k -> f = k ) |
| 55 |
52 53 54
|
s3eqd |
|- ( f = k -> <" D E f "> = <" D E k "> ) |
| 56 |
55
|
breq2d |
|- ( f = k -> ( <" A B C "> ( cgrG ` G ) <" D E f "> <-> <" A B C "> ( cgrG ` G ) <" D E k "> ) ) |
| 57 |
|
breq1 |
|- ( f = k -> ( f ( ( hpG ` G ) ` ( D L E ) ) F <-> k ( ( hpG ` G ) ` ( D L E ) ) F ) ) |
| 58 |
56 57
|
anbi12d |
|- ( f = k -> ( ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) <-> ( <" A B C "> ( cgrG ` G ) <" D E k "> /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) ) ) |
| 59 |
58
|
reu4 |
|- ( E! f e. P ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) <-> ( E. f e. P ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) /\ A. f e. P A. k e. P ( ( ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) /\ ( <" A B C "> ( cgrG ` G ) <" D E k "> /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) ) -> f = k ) ) ) |
| 60 |
16 51 59
|
sylanbrc |
|- ( ph -> E! f e. P ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) |