| Step | Hyp | Ref | Expression | 
						
							| 1 |  | trgcopy.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | trgcopy.m |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | trgcopy.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | trgcopy.l |  |-  L = ( LineG ` G ) | 
						
							| 5 |  | trgcopy.k |  |-  K = ( hlG ` G ) | 
						
							| 6 |  | trgcopy.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 7 |  | trgcopy.a |  |-  ( ph -> A e. P ) | 
						
							| 8 |  | trgcopy.b |  |-  ( ph -> B e. P ) | 
						
							| 9 |  | trgcopy.c |  |-  ( ph -> C e. P ) | 
						
							| 10 |  | trgcopy.d |  |-  ( ph -> D e. P ) | 
						
							| 11 |  | trgcopy.e |  |-  ( ph -> E e. P ) | 
						
							| 12 |  | trgcopy.f |  |-  ( ph -> F e. P ) | 
						
							| 13 |  | trgcopy.1 |  |-  ( ph -> -. ( A e. ( B L C ) \/ B = C ) ) | 
						
							| 14 |  | trgcopy.2 |  |-  ( ph -> -. ( D e. ( E L F ) \/ E = F ) ) | 
						
							| 15 |  | trgcopy.3 |  |-  ( ph -> ( A .- B ) = ( D .- E ) ) | 
						
							| 16 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | trgcopy |  |-  ( ph -> E. f e. P ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) | 
						
							| 17 | 6 | ad5antr |  |-  ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> G e. TarskiG ) | 
						
							| 18 | 7 | ad5antr |  |-  ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> A e. P ) | 
						
							| 19 | 8 | ad5antr |  |-  ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> B e. P ) | 
						
							| 20 | 9 | ad5antr |  |-  ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> C e. P ) | 
						
							| 21 | 10 | ad5antr |  |-  ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> D e. P ) | 
						
							| 22 | 11 | ad5antr |  |-  ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> E e. P ) | 
						
							| 23 | 12 | ad5antr |  |-  ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> F e. P ) | 
						
							| 24 | 13 | ad5antr |  |-  ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> -. ( A e. ( B L C ) \/ B = C ) ) | 
						
							| 25 | 14 | ad5antr |  |-  ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> -. ( D e. ( E L F ) \/ E = F ) ) | 
						
							| 26 | 15 | ad5antr |  |-  ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> ( A .- B ) = ( D .- E ) ) | 
						
							| 27 |  | simpl |  |-  ( ( x = a /\ y = b ) -> x = a ) | 
						
							| 28 | 27 | eleq1d |  |-  ( ( x = a /\ y = b ) -> ( x e. ( P \ ( D L E ) ) <-> a e. ( P \ ( D L E ) ) ) ) | 
						
							| 29 |  | simpr |  |-  ( ( x = a /\ y = b ) -> y = b ) | 
						
							| 30 | 29 | eleq1d |  |-  ( ( x = a /\ y = b ) -> ( y e. ( P \ ( D L E ) ) <-> b e. ( P \ ( D L E ) ) ) ) | 
						
							| 31 | 28 30 | anbi12d |  |-  ( ( x = a /\ y = b ) -> ( ( x e. ( P \ ( D L E ) ) /\ y e. ( P \ ( D L E ) ) ) <-> ( a e. ( P \ ( D L E ) ) /\ b e. ( P \ ( D L E ) ) ) ) ) | 
						
							| 32 |  | simpr |  |-  ( ( ( x = a /\ y = b ) /\ z = t ) -> z = t ) | 
						
							| 33 |  | simpll |  |-  ( ( ( x = a /\ y = b ) /\ z = t ) -> x = a ) | 
						
							| 34 |  | simplr |  |-  ( ( ( x = a /\ y = b ) /\ z = t ) -> y = b ) | 
						
							| 35 | 33 34 | oveq12d |  |-  ( ( ( x = a /\ y = b ) /\ z = t ) -> ( x I y ) = ( a I b ) ) | 
						
							| 36 | 32 35 | eleq12d |  |-  ( ( ( x = a /\ y = b ) /\ z = t ) -> ( z e. ( x I y ) <-> t e. ( a I b ) ) ) | 
						
							| 37 | 36 | cbvrexdva |  |-  ( ( x = a /\ y = b ) -> ( E. z e. ( D L E ) z e. ( x I y ) <-> E. t e. ( D L E ) t e. ( a I b ) ) ) | 
						
							| 38 | 31 37 | anbi12d |  |-  ( ( x = a /\ y = b ) -> ( ( ( x e. ( P \ ( D L E ) ) /\ y e. ( P \ ( D L E ) ) ) /\ E. z e. ( D L E ) z e. ( x I y ) ) <-> ( ( a e. ( P \ ( D L E ) ) /\ b e. ( P \ ( D L E ) ) ) /\ E. t e. ( D L E ) t e. ( a I b ) ) ) ) | 
						
							| 39 | 38 | cbvopabv |  |-  { <. x , y >. | ( ( x e. ( P \ ( D L E ) ) /\ y e. ( P \ ( D L E ) ) ) /\ E. z e. ( D L E ) z e. ( x I y ) ) } = { <. a , b >. | ( ( a e. ( P \ ( D L E ) ) /\ b e. ( P \ ( D L E ) ) ) /\ E. t e. ( D L E ) t e. ( a I b ) ) } | 
						
							| 40 |  | simp-5r |  |-  ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> f e. P ) | 
						
							| 41 |  | simp-4r |  |-  ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> k e. P ) | 
						
							| 42 |  | simpllr |  |-  ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) | 
						
							| 43 | 42 | simpld |  |-  ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> <" A B C "> ( cgrG ` G ) <" D E f "> ) | 
						
							| 44 |  | simplr |  |-  ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> <" A B C "> ( cgrG ` G ) <" D E k "> ) | 
						
							| 45 | 42 | simprd |  |-  ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> f ( ( hpG ` G ) ` ( D L E ) ) F ) | 
						
							| 46 |  | simpr |  |-  ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> k ( ( hpG ` G ) ` ( D L E ) ) F ) | 
						
							| 47 | 1 2 3 4 5 17 18 19 20 21 22 23 24 25 26 39 40 41 43 44 45 46 | trgcopyeulem |  |-  ( ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ <" A B C "> ( cgrG ` G ) <" D E k "> ) /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) -> f = k ) | 
						
							| 48 | 47 | anasss |  |-  ( ( ( ( ( ph /\ f e. P ) /\ k e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) /\ ( <" A B C "> ( cgrG ` G ) <" D E k "> /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) ) -> f = k ) | 
						
							| 49 | 48 | expl |  |-  ( ( ( ph /\ f e. P ) /\ k e. P ) -> ( ( ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) /\ ( <" A B C "> ( cgrG ` G ) <" D E k "> /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) ) -> f = k ) ) | 
						
							| 50 | 49 | anasss |  |-  ( ( ph /\ ( f e. P /\ k e. P ) ) -> ( ( ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) /\ ( <" A B C "> ( cgrG ` G ) <" D E k "> /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) ) -> f = k ) ) | 
						
							| 51 | 50 | ralrimivva |  |-  ( ph -> A. f e. P A. k e. P ( ( ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) /\ ( <" A B C "> ( cgrG ` G ) <" D E k "> /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) ) -> f = k ) ) | 
						
							| 52 |  | eqidd |  |-  ( f = k -> D = D ) | 
						
							| 53 |  | eqidd |  |-  ( f = k -> E = E ) | 
						
							| 54 |  | id |  |-  ( f = k -> f = k ) | 
						
							| 55 | 52 53 54 | s3eqd |  |-  ( f = k -> <" D E f "> = <" D E k "> ) | 
						
							| 56 | 55 | breq2d |  |-  ( f = k -> ( <" A B C "> ( cgrG ` G ) <" D E f "> <-> <" A B C "> ( cgrG ` G ) <" D E k "> ) ) | 
						
							| 57 |  | breq1 |  |-  ( f = k -> ( f ( ( hpG ` G ) ` ( D L E ) ) F <-> k ( ( hpG ` G ) ` ( D L E ) ) F ) ) | 
						
							| 58 | 56 57 | anbi12d |  |-  ( f = k -> ( ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) <-> ( <" A B C "> ( cgrG ` G ) <" D E k "> /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) ) ) | 
						
							| 59 | 58 | reu4 |  |-  ( E! f e. P ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) <-> ( E. f e. P ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) /\ A. f e. P A. k e. P ( ( ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) /\ ( <" A B C "> ( cgrG ` G ) <" D E k "> /\ k ( ( hpG ` G ) ` ( D L E ) ) F ) ) -> f = k ) ) ) | 
						
							| 60 | 16 51 59 | sylanbrc |  |-  ( ph -> E! f e. P ( <" A B C "> ( cgrG ` G ) <" D E f "> /\ f ( ( hpG ` G ) ` ( D L E ) ) F ) ) |