| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) = ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) |
| 2 |
|
eqid |
|- ( ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) ^c ( 1 / 3 ) ) = ( ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) ^c ( 1 / 3 ) ) |
| 3 |
1 2
|
cos9thpinconstr |
|- ( ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) e. Constr /\ ( ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) ^c ( 1 / 3 ) ) e/ Constr ) |
| 4 |
3
|
simpri |
|- ( ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) ^c ( 1 / 3 ) ) e/ Constr |
| 5 |
4
|
neli |
|- -. ( ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) ^c ( 1 / 3 ) ) e. Constr |
| 6 |
3
|
simpli |
|- ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) e. Constr |
| 7 |
|
oveq1 |
|- ( o = ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) -> ( o ^c ( 1 / 3 ) ) = ( ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) ^c ( 1 / 3 ) ) ) |
| 8 |
7
|
eleq1d |
|- ( o = ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) -> ( ( o ^c ( 1 / 3 ) ) e. Constr <-> ( ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) ^c ( 1 / 3 ) ) e. Constr ) ) |
| 9 |
8
|
rspcv |
|- ( ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) e. Constr -> ( A. o e. Constr ( o ^c ( 1 / 3 ) ) e. Constr -> ( ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) ^c ( 1 / 3 ) ) e. Constr ) ) |
| 10 |
6 9
|
ax-mp |
|- ( A. o e. Constr ( o ^c ( 1 / 3 ) ) e. Constr -> ( ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) ^c ( 1 / 3 ) ) e. Constr ) |
| 11 |
5 10
|
mto |
|- -. A. o e. Constr ( o ^c ( 1 / 3 ) ) e. Constr |