Metamath Proof Explorer


Theorem trisecnconstr

Description: Not all angles can be trisected. (Contributed by Thierry Arnoux, 15-Nov-2025)

Ref Expression
Assertion trisecnconstr ¬ o Constr o 1 3 Constr

Proof

Step Hyp Ref Expression
1 eqid e i 2 π 3 = e i 2 π 3
2 eqid e i 2 π 3 1 3 = e i 2 π 3 1 3
3 1 2 cos9thpinconstr e i 2 π 3 Constr e i 2 π 3 1 3 Constr
4 3 simpri e i 2 π 3 1 3 Constr
5 4 neli ¬ e i 2 π 3 1 3 Constr
6 3 simpli e i 2 π 3 Constr
7 oveq1 o = e i 2 π 3 o 1 3 = e i 2 π 3 1 3
8 7 eleq1d o = e i 2 π 3 o 1 3 Constr e i 2 π 3 1 3 Constr
9 8 rspcv e i 2 π 3 Constr o Constr o 1 3 Constr e i 2 π 3 1 3 Constr
10 6 9 ax-mp o Constr o 1 3 Constr e i 2 π 3 1 3 Constr
11 5 10 mto ¬ o Constr o 1 3 Constr