Metamath Proof Explorer


Theorem cos9thpinconstr

Description: Trisecting an angle is an impossible construction. Given for example O = ( exp( (i x. ( 2 x. pi ) ) / 3 ) ) , which represents an angle of ( ( 2 x. _pi ) / 3 ) , the cube root of O is not constructible with straightedge and compass, while O itself is constructible. This is the second part of Metamath 100 proof #8. Theorem 7.14 of Stewart p. 99. (Contributed by Thierry Arnoux and Saveliy Skresanov, 15-Nov-2025)

Ref Expression
Hypotheses cos9thpinconstr.1 O = e i 2 π 3
cos9thpiminply.2 Z = O 1 3
Assertion cos9thpinconstr O Constr Z Constr

Proof

Step Hyp Ref Expression
1 cos9thpinconstr.1 O = e i 2 π 3
2 cos9thpiminply.2 Z = O 1 3
3 1 cos9thpinconstrlem1 O Constr
4 eqid Z + 1 Z = Z + 1 Z
5 1 2 4 cos9thpinconstrlem2 ¬ Z + 1 Z Constr
6 id Z Constr Z Constr
7 2 a1i Z Constr Z = O 1 3
8 ax-icn i
9 8 a1i Z Constr i
10 2cnd Z Constr 2
11 picn π
12 11 a1i Z Constr π
13 10 12 mulcld Z Constr 2 π
14 9 13 mulcld Z Constr i 2 π
15 3cn 3
16 15 a1i Z Constr 3
17 3ne0 3 0
18 17 a1i Z Constr 3 0
19 14 16 18 divcld Z Constr i 2 π 3
20 19 efcld Z Constr e i 2 π 3
21 1 20 eqeltrid Z Constr O
22 1 a1i Z Constr O = e i 2 π 3
23 19 efne0d Z Constr e i 2 π 3 0
24 22 23 eqnetrd Z Constr O 0
25 16 18 reccld Z Constr 1 3
26 21 24 25 cxpne0d Z Constr O 1 3 0
27 7 26 eqnetrd Z Constr Z 0
28 6 27 constrinvcl Z Constr 1 Z Constr
29 6 28 constraddcl Z Constr Z + 1 Z Constr
30 5 29 mto ¬ Z Constr
31 30 nelir Z Constr
32 3 31 pm3.2i O Constr Z Constr