| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cos9thpinconstr.1 |
⊢ 𝑂 = ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) |
| 2 |
|
cos9thpiminply.2 |
⊢ 𝑍 = ( 𝑂 ↑𝑐 ( 1 / 3 ) ) |
| 3 |
1
|
cos9thpinconstrlem1 |
⊢ 𝑂 ∈ Constr |
| 4 |
|
eqid |
⊢ ( 𝑍 + ( 1 / 𝑍 ) ) = ( 𝑍 + ( 1 / 𝑍 ) ) |
| 5 |
1 2 4
|
cos9thpinconstrlem2 |
⊢ ¬ ( 𝑍 + ( 1 / 𝑍 ) ) ∈ Constr |
| 6 |
|
id |
⊢ ( 𝑍 ∈ Constr → 𝑍 ∈ Constr ) |
| 7 |
2
|
a1i |
⊢ ( 𝑍 ∈ Constr → 𝑍 = ( 𝑂 ↑𝑐 ( 1 / 3 ) ) ) |
| 8 |
|
ax-icn |
⊢ i ∈ ℂ |
| 9 |
8
|
a1i |
⊢ ( 𝑍 ∈ Constr → i ∈ ℂ ) |
| 10 |
|
2cnd |
⊢ ( 𝑍 ∈ Constr → 2 ∈ ℂ ) |
| 11 |
|
picn |
⊢ π ∈ ℂ |
| 12 |
11
|
a1i |
⊢ ( 𝑍 ∈ Constr → π ∈ ℂ ) |
| 13 |
10 12
|
mulcld |
⊢ ( 𝑍 ∈ Constr → ( 2 · π ) ∈ ℂ ) |
| 14 |
9 13
|
mulcld |
⊢ ( 𝑍 ∈ Constr → ( i · ( 2 · π ) ) ∈ ℂ ) |
| 15 |
|
3cn |
⊢ 3 ∈ ℂ |
| 16 |
15
|
a1i |
⊢ ( 𝑍 ∈ Constr → 3 ∈ ℂ ) |
| 17 |
|
3ne0 |
⊢ 3 ≠ 0 |
| 18 |
17
|
a1i |
⊢ ( 𝑍 ∈ Constr → 3 ≠ 0 ) |
| 19 |
14 16 18
|
divcld |
⊢ ( 𝑍 ∈ Constr → ( ( i · ( 2 · π ) ) / 3 ) ∈ ℂ ) |
| 20 |
19
|
efcld |
⊢ ( 𝑍 ∈ Constr → ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ∈ ℂ ) |
| 21 |
1 20
|
eqeltrid |
⊢ ( 𝑍 ∈ Constr → 𝑂 ∈ ℂ ) |
| 22 |
1
|
a1i |
⊢ ( 𝑍 ∈ Constr → 𝑂 = ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ) |
| 23 |
19
|
efne0d |
⊢ ( 𝑍 ∈ Constr → ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ≠ 0 ) |
| 24 |
22 23
|
eqnetrd |
⊢ ( 𝑍 ∈ Constr → 𝑂 ≠ 0 ) |
| 25 |
16 18
|
reccld |
⊢ ( 𝑍 ∈ Constr → ( 1 / 3 ) ∈ ℂ ) |
| 26 |
21 24 25
|
cxpne0d |
⊢ ( 𝑍 ∈ Constr → ( 𝑂 ↑𝑐 ( 1 / 3 ) ) ≠ 0 ) |
| 27 |
7 26
|
eqnetrd |
⊢ ( 𝑍 ∈ Constr → 𝑍 ≠ 0 ) |
| 28 |
6 27
|
constrinvcl |
⊢ ( 𝑍 ∈ Constr → ( 1 / 𝑍 ) ∈ Constr ) |
| 29 |
6 28
|
constraddcl |
⊢ ( 𝑍 ∈ Constr → ( 𝑍 + ( 1 / 𝑍 ) ) ∈ Constr ) |
| 30 |
5 29
|
mto |
⊢ ¬ 𝑍 ∈ Constr |
| 31 |
30
|
nelir |
⊢ 𝑍 ∉ Constr |
| 32 |
3 31
|
pm3.2i |
⊢ ( 𝑂 ∈ Constr ∧ 𝑍 ∉ Constr ) |