| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cos9thpinconstr.1 |
⊢ 𝑂 = ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) |
| 2 |
|
cos9thpiminply.2 |
⊢ 𝑍 = ( 𝑂 ↑𝑐 ( 1 / 3 ) ) |
| 3 |
|
cos9thpiminply.3 |
⊢ 𝐴 = ( 𝑍 + ( 1 / 𝑍 ) ) |
| 4 |
|
eqid |
⊢ ( deg1 ‘ ( ℂfld ↾s ℚ ) ) = ( deg1 ‘ ( ℂfld ↾s ℚ ) ) |
| 5 |
|
eqid |
⊢ ( ℂfld minPoly ℚ ) = ( ℂfld minPoly ℚ ) |
| 6 |
|
ax-icn |
⊢ i ∈ ℂ |
| 7 |
6
|
a1i |
⊢ ( ⊤ → i ∈ ℂ ) |
| 8 |
|
2cnd |
⊢ ( ⊤ → 2 ∈ ℂ ) |
| 9 |
|
picn |
⊢ π ∈ ℂ |
| 10 |
9
|
a1i |
⊢ ( ⊤ → π ∈ ℂ ) |
| 11 |
8 10
|
mulcld |
⊢ ( ⊤ → ( 2 · π ) ∈ ℂ ) |
| 12 |
7 11
|
mulcld |
⊢ ( ⊤ → ( i · ( 2 · π ) ) ∈ ℂ ) |
| 13 |
|
3cn |
⊢ 3 ∈ ℂ |
| 14 |
13
|
a1i |
⊢ ( ⊤ → 3 ∈ ℂ ) |
| 15 |
|
3ne0 |
⊢ 3 ≠ 0 |
| 16 |
15
|
a1i |
⊢ ( ⊤ → 3 ≠ 0 ) |
| 17 |
12 14 16
|
divcld |
⊢ ( ⊤ → ( ( i · ( 2 · π ) ) / 3 ) ∈ ℂ ) |
| 18 |
17
|
efcld |
⊢ ( ⊤ → ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ∈ ℂ ) |
| 19 |
1 18
|
eqeltrid |
⊢ ( ⊤ → 𝑂 ∈ ℂ ) |
| 20 |
13 15
|
reccli |
⊢ ( 1 / 3 ) ∈ ℂ |
| 21 |
20
|
a1i |
⊢ ( ⊤ → ( 1 / 3 ) ∈ ℂ ) |
| 22 |
19 21
|
cxpcld |
⊢ ( ⊤ → ( 𝑂 ↑𝑐 ( 1 / 3 ) ) ∈ ℂ ) |
| 23 |
2 22
|
eqeltrid |
⊢ ( ⊤ → 𝑍 ∈ ℂ ) |
| 24 |
2
|
a1i |
⊢ ( ⊤ → 𝑍 = ( 𝑂 ↑𝑐 ( 1 / 3 ) ) ) |
| 25 |
1
|
a1i |
⊢ ( ⊤ → 𝑂 = ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ) |
| 26 |
17
|
efne0d |
⊢ ( ⊤ → ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ≠ 0 ) |
| 27 |
25 26
|
eqnetrd |
⊢ ( ⊤ → 𝑂 ≠ 0 ) |
| 28 |
19 27 21
|
cxpne0d |
⊢ ( ⊤ → ( 𝑂 ↑𝑐 ( 1 / 3 ) ) ≠ 0 ) |
| 29 |
24 28
|
eqnetrd |
⊢ ( ⊤ → 𝑍 ≠ 0 ) |
| 30 |
23 29
|
reccld |
⊢ ( ⊤ → ( 1 / 𝑍 ) ∈ ℂ ) |
| 31 |
23 30
|
addcld |
⊢ ( ⊤ → ( 𝑍 + ( 1 / 𝑍 ) ) ∈ ℂ ) |
| 32 |
3 31
|
eqeltrid |
⊢ ( ⊤ → 𝐴 ∈ ℂ ) |
| 33 |
|
eqidd |
⊢ ( ⊤ → ( ( ℂfld minPoly ℚ ) ‘ 𝐴 ) = ( ( ℂfld minPoly ℚ ) ‘ 𝐴 ) ) |
| 34 |
|
eqid |
⊢ ( ℂfld ↾s ℚ ) = ( ℂfld ↾s ℚ ) |
| 35 |
|
eqid |
⊢ ( +g ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) = ( +g ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) |
| 36 |
|
eqid |
⊢ ( .r ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) = ( .r ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) |
| 37 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ) = ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ) |
| 38 |
|
eqid |
⊢ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) = ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) |
| 39 |
|
eqid |
⊢ ( algSc ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) = ( algSc ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) |
| 40 |
|
eqid |
⊢ ( var1 ‘ ( ℂfld ↾s ℚ ) ) = ( var1 ‘ ( ℂfld ↾s ℚ ) ) |
| 41 |
|
eqid |
⊢ ( ( 3 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ) ( var1 ‘ ( ℂfld ↾s ℚ ) ) ) ( +g ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ( ( ( ( algSc ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ‘ - 3 ) ( .r ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ( var1 ‘ ( ℂfld ↾s ℚ ) ) ) ( +g ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ‘ 1 ) ) ) = ( ( 3 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ) ( var1 ‘ ( ℂfld ↾s ℚ ) ) ) ( +g ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ( ( ( ( algSc ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ‘ - 3 ) ( .r ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ( var1 ‘ ( ℂfld ↾s ℚ ) ) ) ( +g ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ‘ 1 ) ) ) |
| 42 |
1 2 3 34 35 36 37 38 39 40 4 41 5
|
cos9thpiminply |
⊢ ( ( ( 3 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ) ( var1 ‘ ( ℂfld ↾s ℚ ) ) ) ( +g ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ( ( ( ( algSc ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ‘ - 3 ) ( .r ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ( var1 ‘ ( ℂfld ↾s ℚ ) ) ) ( +g ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ‘ 1 ) ) ) = ( ( ℂfld minPoly ℚ ) ‘ 𝐴 ) ∧ ( ( deg1 ‘ ( ℂfld ↾s ℚ ) ) ‘ ( ( 3 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ) ( var1 ‘ ( ℂfld ↾s ℚ ) ) ) ( +g ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ( ( ( ( algSc ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ‘ - 3 ) ( .r ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ( var1 ‘ ( ℂfld ↾s ℚ ) ) ) ( +g ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ‘ 1 ) ) ) ) = 3 ) |
| 43 |
42
|
simpli |
⊢ ( ( 3 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ) ( var1 ‘ ( ℂfld ↾s ℚ ) ) ) ( +g ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ( ( ( ( algSc ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ‘ - 3 ) ( .r ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ( var1 ‘ ( ℂfld ↾s ℚ ) ) ) ( +g ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ‘ 1 ) ) ) = ( ( ℂfld minPoly ℚ ) ‘ 𝐴 ) |
| 44 |
43
|
fveq2i |
⊢ ( ( deg1 ‘ ( ℂfld ↾s ℚ ) ) ‘ ( ( 3 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ) ( var1 ‘ ( ℂfld ↾s ℚ ) ) ) ( +g ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ( ( ( ( algSc ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ‘ - 3 ) ( .r ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ( var1 ‘ ( ℂfld ↾s ℚ ) ) ) ( +g ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ‘ 1 ) ) ) ) = ( ( deg1 ‘ ( ℂfld ↾s ℚ ) ) ‘ ( ( ℂfld minPoly ℚ ) ‘ 𝐴 ) ) |
| 45 |
42
|
simpri |
⊢ ( ( deg1 ‘ ( ℂfld ↾s ℚ ) ) ‘ ( ( 3 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ) ( var1 ‘ ( ℂfld ↾s ℚ ) ) ) ( +g ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ( ( ( ( algSc ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ‘ - 3 ) ( .r ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ( var1 ‘ ( ℂfld ↾s ℚ ) ) ) ( +g ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ( ( algSc ‘ ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) ) ‘ 1 ) ) ) ) = 3 |
| 46 |
44 45
|
eqtr3i |
⊢ ( ( deg1 ‘ ( ℂfld ↾s ℚ ) ) ‘ ( ( ℂfld minPoly ℚ ) ‘ 𝐴 ) ) = 3 |
| 47 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 48 |
46 47
|
eqeltri |
⊢ ( ( deg1 ‘ ( ℂfld ↾s ℚ ) ) ‘ ( ( ℂfld minPoly ℚ ) ‘ 𝐴 ) ) ∈ ℕ0 |
| 49 |
48
|
a1i |
⊢ ( ⊤ → ( ( deg1 ‘ ( ℂfld ↾s ℚ ) ) ‘ ( ( ℂfld minPoly ℚ ) ‘ 𝐴 ) ) ∈ ℕ0 ) |
| 50 |
46
|
a1i |
⊢ ( 𝑛 ∈ ℕ0 → ( ( deg1 ‘ ( ℂfld ↾s ℚ ) ) ‘ ( ( ℂfld minPoly ℚ ) ‘ 𝐴 ) ) = 3 ) |
| 51 |
|
3z |
⊢ 3 ∈ ℤ |
| 52 |
|
iddvds |
⊢ ( 3 ∈ ℤ → 3 ∥ 3 ) |
| 53 |
51 52
|
ax-mp |
⊢ 3 ∥ 3 |
| 54 |
|
simpr |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 = ( 2 ↑ 𝑛 ) ) → 3 = ( 2 ↑ 𝑛 ) ) |
| 55 |
53 54
|
breqtrid |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 = ( 2 ↑ 𝑛 ) ) → 3 ∥ ( 2 ↑ 𝑛 ) ) |
| 56 |
|
3prm |
⊢ 3 ∈ ℙ |
| 57 |
|
2prm |
⊢ 2 ∈ ℙ |
| 58 |
|
prmdvdsexpr |
⊢ ( ( 3 ∈ ℙ ∧ 2 ∈ ℙ ∧ 𝑛 ∈ ℕ0 ) → ( 3 ∥ ( 2 ↑ 𝑛 ) → 3 = 2 ) ) |
| 59 |
56 57 58
|
mp3an12 |
⊢ ( 𝑛 ∈ ℕ0 → ( 3 ∥ ( 2 ↑ 𝑛 ) → 3 = 2 ) ) |
| 60 |
59
|
imp |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( 2 ↑ 𝑛 ) ) → 3 = 2 ) |
| 61 |
55 60
|
syldan |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 = ( 2 ↑ 𝑛 ) ) → 3 = 2 ) |
| 62 |
|
2re |
⊢ 2 ∈ ℝ |
| 63 |
|
2lt3 |
⊢ 2 < 3 |
| 64 |
62 63
|
gtneii |
⊢ 3 ≠ 2 |
| 65 |
64
|
neii |
⊢ ¬ 3 = 2 |
| 66 |
65
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 = ( 2 ↑ 𝑛 ) ) → ¬ 3 = 2 ) |
| 67 |
61 66
|
pm2.65da |
⊢ ( 𝑛 ∈ ℕ0 → ¬ 3 = ( 2 ↑ 𝑛 ) ) |
| 68 |
67
|
neqned |
⊢ ( 𝑛 ∈ ℕ0 → 3 ≠ ( 2 ↑ 𝑛 ) ) |
| 69 |
50 68
|
eqnetrd |
⊢ ( 𝑛 ∈ ℕ0 → ( ( deg1 ‘ ( ℂfld ↾s ℚ ) ) ‘ ( ( ℂfld minPoly ℚ ) ‘ 𝐴 ) ) ≠ ( 2 ↑ 𝑛 ) ) |
| 70 |
69
|
adantl |
⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ0 ) → ( ( deg1 ‘ ( ℂfld ↾s ℚ ) ) ‘ ( ( ℂfld minPoly ℚ ) ‘ 𝐴 ) ) ≠ ( 2 ↑ 𝑛 ) ) |
| 71 |
4 5 32 33 49 70
|
constrcon |
⊢ ( ⊤ → ¬ 𝐴 ∈ Constr ) |
| 72 |
71
|
mptru |
⊢ ¬ 𝐴 ∈ Constr |