| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cos9thpinconstr.1 |
|
| 2 |
|
cos9thpiminply.2 |
|
| 3 |
|
cos9thpiminply.3 |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
|
ax-icn |
|
| 7 |
6
|
a1i |
|
| 8 |
|
2cnd |
|
| 9 |
|
picn |
|
| 10 |
9
|
a1i |
|
| 11 |
8 10
|
mulcld |
|
| 12 |
7 11
|
mulcld |
|
| 13 |
|
3cn |
|
| 14 |
13
|
a1i |
|
| 15 |
|
3ne0 |
|
| 16 |
15
|
a1i |
|
| 17 |
12 14 16
|
divcld |
|
| 18 |
17
|
efcld |
|
| 19 |
1 18
|
eqeltrid |
|
| 20 |
13 15
|
reccli |
|
| 21 |
20
|
a1i |
|
| 22 |
19 21
|
cxpcld |
|
| 23 |
2 22
|
eqeltrid |
|
| 24 |
2
|
a1i |
|
| 25 |
1
|
a1i |
|
| 26 |
17
|
efne0d |
|
| 27 |
25 26
|
eqnetrd |
|
| 28 |
19 27 21
|
cxpne0d |
|
| 29 |
24 28
|
eqnetrd |
|
| 30 |
23 29
|
reccld |
|
| 31 |
23 30
|
addcld |
|
| 32 |
3 31
|
eqeltrid |
|
| 33 |
|
eqidd |
|
| 34 |
|
eqid |
|
| 35 |
|
eqid |
|
| 36 |
|
eqid |
|
| 37 |
|
eqid |
|
| 38 |
|
eqid |
|
| 39 |
|
eqid |
|
| 40 |
|
eqid |
|
| 41 |
|
eqid |
|
| 42 |
1 2 3 34 35 36 37 38 39 40 4 41 5
|
cos9thpiminply |
|
| 43 |
42
|
simpli |
|
| 44 |
43
|
fveq2i |
|
| 45 |
42
|
simpri |
|
| 46 |
44 45
|
eqtr3i |
|
| 47 |
|
3nn0 |
|
| 48 |
46 47
|
eqeltri |
|
| 49 |
48
|
a1i |
|
| 50 |
46
|
a1i |
|
| 51 |
|
3z |
|
| 52 |
|
iddvds |
|
| 53 |
51 52
|
ax-mp |
|
| 54 |
|
simpr |
|
| 55 |
53 54
|
breqtrid |
|
| 56 |
|
3prm |
|
| 57 |
|
2prm |
|
| 58 |
|
prmdvdsexpr |
|
| 59 |
56 57 58
|
mp3an12 |
|
| 60 |
59
|
imp |
|
| 61 |
55 60
|
syldan |
|
| 62 |
|
2re |
|
| 63 |
|
2lt3 |
|
| 64 |
62 63
|
gtneii |
|
| 65 |
64
|
neii |
|
| 66 |
65
|
a1i |
|
| 67 |
61 66
|
pm2.65da |
|
| 68 |
67
|
neqned |
|
| 69 |
50 68
|
eqnetrd |
|
| 70 |
69
|
adantl |
|
| 71 |
4 5 32 33 49 70
|
constrcon |
|
| 72 |
71
|
mptru |
|