| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cos9thpinconstr.1 |
|- O = ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) |
| 2 |
|
cos9thpiminply.2 |
|- Z = ( O ^c ( 1 / 3 ) ) |
| 3 |
|
cos9thpiminply.3 |
|- A = ( Z + ( 1 / Z ) ) |
| 4 |
|
eqid |
|- ( deg1 ` ( CCfld |`s QQ ) ) = ( deg1 ` ( CCfld |`s QQ ) ) |
| 5 |
|
eqid |
|- ( CCfld minPoly QQ ) = ( CCfld minPoly QQ ) |
| 6 |
|
ax-icn |
|- _i e. CC |
| 7 |
6
|
a1i |
|- ( T. -> _i e. CC ) |
| 8 |
|
2cnd |
|- ( T. -> 2 e. CC ) |
| 9 |
|
picn |
|- _pi e. CC |
| 10 |
9
|
a1i |
|- ( T. -> _pi e. CC ) |
| 11 |
8 10
|
mulcld |
|- ( T. -> ( 2 x. _pi ) e. CC ) |
| 12 |
7 11
|
mulcld |
|- ( T. -> ( _i x. ( 2 x. _pi ) ) e. CC ) |
| 13 |
|
3cn |
|- 3 e. CC |
| 14 |
13
|
a1i |
|- ( T. -> 3 e. CC ) |
| 15 |
|
3ne0 |
|- 3 =/= 0 |
| 16 |
15
|
a1i |
|- ( T. -> 3 =/= 0 ) |
| 17 |
12 14 16
|
divcld |
|- ( T. -> ( ( _i x. ( 2 x. _pi ) ) / 3 ) e. CC ) |
| 18 |
17
|
efcld |
|- ( T. -> ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) e. CC ) |
| 19 |
1 18
|
eqeltrid |
|- ( T. -> O e. CC ) |
| 20 |
13 15
|
reccli |
|- ( 1 / 3 ) e. CC |
| 21 |
20
|
a1i |
|- ( T. -> ( 1 / 3 ) e. CC ) |
| 22 |
19 21
|
cxpcld |
|- ( T. -> ( O ^c ( 1 / 3 ) ) e. CC ) |
| 23 |
2 22
|
eqeltrid |
|- ( T. -> Z e. CC ) |
| 24 |
2
|
a1i |
|- ( T. -> Z = ( O ^c ( 1 / 3 ) ) ) |
| 25 |
1
|
a1i |
|- ( T. -> O = ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) ) |
| 26 |
17
|
efne0d |
|- ( T. -> ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) =/= 0 ) |
| 27 |
25 26
|
eqnetrd |
|- ( T. -> O =/= 0 ) |
| 28 |
19 27 21
|
cxpne0d |
|- ( T. -> ( O ^c ( 1 / 3 ) ) =/= 0 ) |
| 29 |
24 28
|
eqnetrd |
|- ( T. -> Z =/= 0 ) |
| 30 |
23 29
|
reccld |
|- ( T. -> ( 1 / Z ) e. CC ) |
| 31 |
23 30
|
addcld |
|- ( T. -> ( Z + ( 1 / Z ) ) e. CC ) |
| 32 |
3 31
|
eqeltrid |
|- ( T. -> A e. CC ) |
| 33 |
|
eqidd |
|- ( T. -> ( ( CCfld minPoly QQ ) ` A ) = ( ( CCfld minPoly QQ ) ` A ) ) |
| 34 |
|
eqid |
|- ( CCfld |`s QQ ) = ( CCfld |`s QQ ) |
| 35 |
|
eqid |
|- ( +g ` ( Poly1 ` ( CCfld |`s QQ ) ) ) = ( +g ` ( Poly1 ` ( CCfld |`s QQ ) ) ) |
| 36 |
|
eqid |
|- ( .r ` ( Poly1 ` ( CCfld |`s QQ ) ) ) = ( .r ` ( Poly1 ` ( CCfld |`s QQ ) ) ) |
| 37 |
|
eqid |
|- ( .g ` ( mulGrp ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ) = ( .g ` ( mulGrp ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ) |
| 38 |
|
eqid |
|- ( Poly1 ` ( CCfld |`s QQ ) ) = ( Poly1 ` ( CCfld |`s QQ ) ) |
| 39 |
|
eqid |
|- ( algSc ` ( Poly1 ` ( CCfld |`s QQ ) ) ) = ( algSc ` ( Poly1 ` ( CCfld |`s QQ ) ) ) |
| 40 |
|
eqid |
|- ( var1 ` ( CCfld |`s QQ ) ) = ( var1 ` ( CCfld |`s QQ ) ) |
| 41 |
|
eqid |
|- ( ( 3 ( .g ` ( mulGrp ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ) ( var1 ` ( CCfld |`s QQ ) ) ) ( +g ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ( ( ( ( algSc ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ` -u 3 ) ( .r ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ( var1 ` ( CCfld |`s QQ ) ) ) ( +g ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ( ( algSc ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ` 1 ) ) ) = ( ( 3 ( .g ` ( mulGrp ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ) ( var1 ` ( CCfld |`s QQ ) ) ) ( +g ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ( ( ( ( algSc ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ` -u 3 ) ( .r ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ( var1 ` ( CCfld |`s QQ ) ) ) ( +g ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ( ( algSc ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ` 1 ) ) ) |
| 42 |
1 2 3 34 35 36 37 38 39 40 4 41 5
|
cos9thpiminply |
|- ( ( ( 3 ( .g ` ( mulGrp ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ) ( var1 ` ( CCfld |`s QQ ) ) ) ( +g ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ( ( ( ( algSc ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ` -u 3 ) ( .r ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ( var1 ` ( CCfld |`s QQ ) ) ) ( +g ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ( ( algSc ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ` 1 ) ) ) = ( ( CCfld minPoly QQ ) ` A ) /\ ( ( deg1 ` ( CCfld |`s QQ ) ) ` ( ( 3 ( .g ` ( mulGrp ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ) ( var1 ` ( CCfld |`s QQ ) ) ) ( +g ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ( ( ( ( algSc ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ` -u 3 ) ( .r ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ( var1 ` ( CCfld |`s QQ ) ) ) ( +g ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ( ( algSc ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ` 1 ) ) ) ) = 3 ) |
| 43 |
42
|
simpli |
|- ( ( 3 ( .g ` ( mulGrp ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ) ( var1 ` ( CCfld |`s QQ ) ) ) ( +g ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ( ( ( ( algSc ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ` -u 3 ) ( .r ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ( var1 ` ( CCfld |`s QQ ) ) ) ( +g ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ( ( algSc ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ` 1 ) ) ) = ( ( CCfld minPoly QQ ) ` A ) |
| 44 |
43
|
fveq2i |
|- ( ( deg1 ` ( CCfld |`s QQ ) ) ` ( ( 3 ( .g ` ( mulGrp ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ) ( var1 ` ( CCfld |`s QQ ) ) ) ( +g ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ( ( ( ( algSc ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ` -u 3 ) ( .r ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ( var1 ` ( CCfld |`s QQ ) ) ) ( +g ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ( ( algSc ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ` 1 ) ) ) ) = ( ( deg1 ` ( CCfld |`s QQ ) ) ` ( ( CCfld minPoly QQ ) ` A ) ) |
| 45 |
42
|
simpri |
|- ( ( deg1 ` ( CCfld |`s QQ ) ) ` ( ( 3 ( .g ` ( mulGrp ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ) ( var1 ` ( CCfld |`s QQ ) ) ) ( +g ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ( ( ( ( algSc ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ` -u 3 ) ( .r ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ( var1 ` ( CCfld |`s QQ ) ) ) ( +g ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ( ( algSc ` ( Poly1 ` ( CCfld |`s QQ ) ) ) ` 1 ) ) ) ) = 3 |
| 46 |
44 45
|
eqtr3i |
|- ( ( deg1 ` ( CCfld |`s QQ ) ) ` ( ( CCfld minPoly QQ ) ` A ) ) = 3 |
| 47 |
|
3nn0 |
|- 3 e. NN0 |
| 48 |
46 47
|
eqeltri |
|- ( ( deg1 ` ( CCfld |`s QQ ) ) ` ( ( CCfld minPoly QQ ) ` A ) ) e. NN0 |
| 49 |
48
|
a1i |
|- ( T. -> ( ( deg1 ` ( CCfld |`s QQ ) ) ` ( ( CCfld minPoly QQ ) ` A ) ) e. NN0 ) |
| 50 |
46
|
a1i |
|- ( n e. NN0 -> ( ( deg1 ` ( CCfld |`s QQ ) ) ` ( ( CCfld minPoly QQ ) ` A ) ) = 3 ) |
| 51 |
|
3z |
|- 3 e. ZZ |
| 52 |
|
iddvds |
|- ( 3 e. ZZ -> 3 || 3 ) |
| 53 |
51 52
|
ax-mp |
|- 3 || 3 |
| 54 |
|
simpr |
|- ( ( n e. NN0 /\ 3 = ( 2 ^ n ) ) -> 3 = ( 2 ^ n ) ) |
| 55 |
53 54
|
breqtrid |
|- ( ( n e. NN0 /\ 3 = ( 2 ^ n ) ) -> 3 || ( 2 ^ n ) ) |
| 56 |
|
3prm |
|- 3 e. Prime |
| 57 |
|
2prm |
|- 2 e. Prime |
| 58 |
|
prmdvdsexpr |
|- ( ( 3 e. Prime /\ 2 e. Prime /\ n e. NN0 ) -> ( 3 || ( 2 ^ n ) -> 3 = 2 ) ) |
| 59 |
56 57 58
|
mp3an12 |
|- ( n e. NN0 -> ( 3 || ( 2 ^ n ) -> 3 = 2 ) ) |
| 60 |
59
|
imp |
|- ( ( n e. NN0 /\ 3 || ( 2 ^ n ) ) -> 3 = 2 ) |
| 61 |
55 60
|
syldan |
|- ( ( n e. NN0 /\ 3 = ( 2 ^ n ) ) -> 3 = 2 ) |
| 62 |
|
2re |
|- 2 e. RR |
| 63 |
|
2lt3 |
|- 2 < 3 |
| 64 |
62 63
|
gtneii |
|- 3 =/= 2 |
| 65 |
64
|
neii |
|- -. 3 = 2 |
| 66 |
65
|
a1i |
|- ( ( n e. NN0 /\ 3 = ( 2 ^ n ) ) -> -. 3 = 2 ) |
| 67 |
61 66
|
pm2.65da |
|- ( n e. NN0 -> -. 3 = ( 2 ^ n ) ) |
| 68 |
67
|
neqned |
|- ( n e. NN0 -> 3 =/= ( 2 ^ n ) ) |
| 69 |
50 68
|
eqnetrd |
|- ( n e. NN0 -> ( ( deg1 ` ( CCfld |`s QQ ) ) ` ( ( CCfld minPoly QQ ) ` A ) ) =/= ( 2 ^ n ) ) |
| 70 |
69
|
adantl |
|- ( ( T. /\ n e. NN0 ) -> ( ( deg1 ` ( CCfld |`s QQ ) ) ` ( ( CCfld minPoly QQ ) ` A ) ) =/= ( 2 ^ n ) ) |
| 71 |
4 5 32 33 49 70
|
constrcon |
|- ( T. -> -. A e. Constr ) |
| 72 |
71
|
mptru |
|- -. A e. Constr |