| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cos9thpinconstr.1 |
|- O = ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) |
| 2 |
|
cos9thpiminply.2 |
|- Z = ( O ^c ( 1 / 3 ) ) |
| 3 |
1
|
cos9thpinconstrlem1 |
|- O e. Constr |
| 4 |
|
eqid |
|- ( Z + ( 1 / Z ) ) = ( Z + ( 1 / Z ) ) |
| 5 |
1 2 4
|
cos9thpinconstrlem2 |
|- -. ( Z + ( 1 / Z ) ) e. Constr |
| 6 |
|
id |
|- ( Z e. Constr -> Z e. Constr ) |
| 7 |
2
|
a1i |
|- ( Z e. Constr -> Z = ( O ^c ( 1 / 3 ) ) ) |
| 8 |
|
ax-icn |
|- _i e. CC |
| 9 |
8
|
a1i |
|- ( Z e. Constr -> _i e. CC ) |
| 10 |
|
2cnd |
|- ( Z e. Constr -> 2 e. CC ) |
| 11 |
|
picn |
|- _pi e. CC |
| 12 |
11
|
a1i |
|- ( Z e. Constr -> _pi e. CC ) |
| 13 |
10 12
|
mulcld |
|- ( Z e. Constr -> ( 2 x. _pi ) e. CC ) |
| 14 |
9 13
|
mulcld |
|- ( Z e. Constr -> ( _i x. ( 2 x. _pi ) ) e. CC ) |
| 15 |
|
3cn |
|- 3 e. CC |
| 16 |
15
|
a1i |
|- ( Z e. Constr -> 3 e. CC ) |
| 17 |
|
3ne0 |
|- 3 =/= 0 |
| 18 |
17
|
a1i |
|- ( Z e. Constr -> 3 =/= 0 ) |
| 19 |
14 16 18
|
divcld |
|- ( Z e. Constr -> ( ( _i x. ( 2 x. _pi ) ) / 3 ) e. CC ) |
| 20 |
19
|
efcld |
|- ( Z e. Constr -> ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) e. CC ) |
| 21 |
1 20
|
eqeltrid |
|- ( Z e. Constr -> O e. CC ) |
| 22 |
1
|
a1i |
|- ( Z e. Constr -> O = ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) ) |
| 23 |
19
|
efne0d |
|- ( Z e. Constr -> ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) =/= 0 ) |
| 24 |
22 23
|
eqnetrd |
|- ( Z e. Constr -> O =/= 0 ) |
| 25 |
16 18
|
reccld |
|- ( Z e. Constr -> ( 1 / 3 ) e. CC ) |
| 26 |
21 24 25
|
cxpne0d |
|- ( Z e. Constr -> ( O ^c ( 1 / 3 ) ) =/= 0 ) |
| 27 |
7 26
|
eqnetrd |
|- ( Z e. Constr -> Z =/= 0 ) |
| 28 |
6 27
|
constrinvcl |
|- ( Z e. Constr -> ( 1 / Z ) e. Constr ) |
| 29 |
6 28
|
constraddcl |
|- ( Z e. Constr -> ( Z + ( 1 / Z ) ) e. Constr ) |
| 30 |
5 29
|
mto |
|- -. Z e. Constr |
| 31 |
30
|
nelir |
|- Z e/ Constr |
| 32 |
3 31
|
pm3.2i |
|- ( O e. Constr /\ Z e/ Constr ) |