| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cos9thpinconstr.1 |
|- O = ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) |
| 2 |
|
0zd |
|- ( T. -> 0 e. ZZ ) |
| 3 |
2
|
zconstr |
|- ( T. -> 0 e. Constr ) |
| 4 |
|
1zzd |
|- ( T. -> 1 e. ZZ ) |
| 5 |
4
|
zconstr |
|- ( T. -> 1 e. Constr ) |
| 6 |
5
|
constrnegcl |
|- ( T. -> -u 1 e. Constr ) |
| 7 |
|
ax-icn |
|- _i e. CC |
| 8 |
7
|
a1i |
|- ( T. -> _i e. CC ) |
| 9 |
|
2cnd |
|- ( T. -> 2 e. CC ) |
| 10 |
|
picn |
|- _pi e. CC |
| 11 |
10
|
a1i |
|- ( T. -> _pi e. CC ) |
| 12 |
9 11
|
mulcld |
|- ( T. -> ( 2 x. _pi ) e. CC ) |
| 13 |
8 12
|
mulcld |
|- ( T. -> ( _i x. ( 2 x. _pi ) ) e. CC ) |
| 14 |
|
3cn |
|- 3 e. CC |
| 15 |
14
|
a1i |
|- ( T. -> 3 e. CC ) |
| 16 |
|
3ne0 |
|- 3 =/= 0 |
| 17 |
16
|
a1i |
|- ( T. -> 3 =/= 0 ) |
| 18 |
13 15 17
|
divcld |
|- ( T. -> ( ( _i x. ( 2 x. _pi ) ) / 3 ) e. CC ) |
| 19 |
18
|
efcld |
|- ( T. -> ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) e. CC ) |
| 20 |
1 19
|
eqeltrid |
|- ( T. -> O e. CC ) |
| 21 |
|
0cnd |
|- ( T. -> 0 e. CC ) |
| 22 |
6
|
constrcn |
|- ( T. -> -u 1 e. CC ) |
| 23 |
|
1cnd |
|- ( T. -> 1 e. CC ) |
| 24 |
21 23
|
subnegd |
|- ( T. -> ( 0 - -u 1 ) = ( 0 + 1 ) ) |
| 25 |
23
|
addlidd |
|- ( T. -> ( 0 + 1 ) = 1 ) |
| 26 |
24 25
|
eqtrd |
|- ( T. -> ( 0 - -u 1 ) = 1 ) |
| 27 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 28 |
27
|
a1i |
|- ( T. -> 1 =/= 0 ) |
| 29 |
26 28
|
eqnetrd |
|- ( T. -> ( 0 - -u 1 ) =/= 0 ) |
| 30 |
21 22 29
|
subne0ad |
|- ( T. -> 0 =/= -u 1 ) |
| 31 |
8 12 15 17
|
divassd |
|- ( T. -> ( ( _i x. ( 2 x. _pi ) ) / 3 ) = ( _i x. ( ( 2 x. _pi ) / 3 ) ) ) |
| 32 |
31
|
fveq2d |
|- ( T. -> ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) = ( exp ` ( _i x. ( ( 2 x. _pi ) / 3 ) ) ) ) |
| 33 |
32
|
fveq2d |
|- ( T. -> ( abs ` ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) ) = ( abs ` ( exp ` ( _i x. ( ( 2 x. _pi ) / 3 ) ) ) ) ) |
| 34 |
|
2re |
|- 2 e. RR |
| 35 |
34
|
a1i |
|- ( T. -> 2 e. RR ) |
| 36 |
|
pire |
|- _pi e. RR |
| 37 |
36
|
a1i |
|- ( T. -> _pi e. RR ) |
| 38 |
35 37
|
remulcld |
|- ( T. -> ( 2 x. _pi ) e. RR ) |
| 39 |
|
3re |
|- 3 e. RR |
| 40 |
39
|
a1i |
|- ( T. -> 3 e. RR ) |
| 41 |
38 40 17
|
redivcld |
|- ( T. -> ( ( 2 x. _pi ) / 3 ) e. RR ) |
| 42 |
|
absefi |
|- ( ( ( 2 x. _pi ) / 3 ) e. RR -> ( abs ` ( exp ` ( _i x. ( ( 2 x. _pi ) / 3 ) ) ) ) = 1 ) |
| 43 |
41 42
|
syl |
|- ( T. -> ( abs ` ( exp ` ( _i x. ( ( 2 x. _pi ) / 3 ) ) ) ) = 1 ) |
| 44 |
33 43
|
eqtrd |
|- ( T. -> ( abs ` ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) ) = 1 ) |
| 45 |
1
|
a1i |
|- ( T. -> O = ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) ) |
| 46 |
45
|
fveq2d |
|- ( T. -> ( abs ` O ) = ( abs ` ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) ) ) |
| 47 |
|
1red |
|- ( T. -> 1 e. RR ) |
| 48 |
|
0le1 |
|- 0 <_ 1 |
| 49 |
48
|
a1i |
|- ( T. -> 0 <_ 1 ) |
| 50 |
47 49
|
absidd |
|- ( T. -> ( abs ` 1 ) = 1 ) |
| 51 |
44 46 50
|
3eqtr4d |
|- ( T. -> ( abs ` O ) = ( abs ` 1 ) ) |
| 52 |
20
|
subid1d |
|- ( T. -> ( O - 0 ) = O ) |
| 53 |
52
|
fveq2d |
|- ( T. -> ( abs ` ( O - 0 ) ) = ( abs ` O ) ) |
| 54 |
23
|
subid1d |
|- ( T. -> ( 1 - 0 ) = 1 ) |
| 55 |
54
|
fveq2d |
|- ( T. -> ( abs ` ( 1 - 0 ) ) = ( abs ` 1 ) ) |
| 56 |
51 53 55
|
3eqtr4d |
|- ( T. -> ( abs ` ( O - 0 ) ) = ( abs ` ( 1 - 0 ) ) ) |
| 57 |
20 23
|
subnegd |
|- ( T. -> ( O - -u 1 ) = ( O + 1 ) ) |
| 58 |
20 23
|
addcld |
|- ( T. -> ( O + 1 ) e. CC ) |
| 59 |
20
|
sqcld |
|- ( T. -> ( O ^ 2 ) e. CC ) |
| 60 |
58 59
|
addcomd |
|- ( T. -> ( ( O + 1 ) + ( O ^ 2 ) ) = ( ( O ^ 2 ) + ( O + 1 ) ) ) |
| 61 |
1
|
cos9thpiminplylem3 |
|- ( ( O ^ 2 ) + ( O + 1 ) ) = 0 |
| 62 |
61
|
a1i |
|- ( T. -> ( ( O ^ 2 ) + ( O + 1 ) ) = 0 ) |
| 63 |
60 62
|
eqtrd |
|- ( T. -> ( ( O + 1 ) + ( O ^ 2 ) ) = 0 ) |
| 64 |
|
addeq0 |
|- ( ( ( O + 1 ) e. CC /\ ( O ^ 2 ) e. CC ) -> ( ( ( O + 1 ) + ( O ^ 2 ) ) = 0 <-> ( O + 1 ) = -u ( O ^ 2 ) ) ) |
| 65 |
64
|
biimpa |
|- ( ( ( ( O + 1 ) e. CC /\ ( O ^ 2 ) e. CC ) /\ ( ( O + 1 ) + ( O ^ 2 ) ) = 0 ) -> ( O + 1 ) = -u ( O ^ 2 ) ) |
| 66 |
58 59 63 65
|
syl21anc |
|- ( T. -> ( O + 1 ) = -u ( O ^ 2 ) ) |
| 67 |
57 66
|
eqtrd |
|- ( T. -> ( O - -u 1 ) = -u ( O ^ 2 ) ) |
| 68 |
67
|
fveq2d |
|- ( T. -> ( abs ` ( O - -u 1 ) ) = ( abs ` -u ( O ^ 2 ) ) ) |
| 69 |
59
|
absnegd |
|- ( T. -> ( abs ` -u ( O ^ 2 ) ) = ( abs ` ( O ^ 2 ) ) ) |
| 70 |
|
2nn0 |
|- 2 e. NN0 |
| 71 |
70
|
a1i |
|- ( T. -> 2 e. NN0 ) |
| 72 |
20 71
|
absexpd |
|- ( T. -> ( abs ` ( O ^ 2 ) ) = ( ( abs ` O ) ^ 2 ) ) |
| 73 |
46 44
|
eqtrd |
|- ( T. -> ( abs ` O ) = 1 ) |
| 74 |
73
|
oveq1d |
|- ( T. -> ( ( abs ` O ) ^ 2 ) = ( 1 ^ 2 ) ) |
| 75 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
| 76 |
55 50
|
eqtrd |
|- ( T. -> ( abs ` ( 1 - 0 ) ) = 1 ) |
| 77 |
75 76
|
eqtr4id |
|- ( T. -> ( 1 ^ 2 ) = ( abs ` ( 1 - 0 ) ) ) |
| 78 |
72 74 77
|
3eqtrd |
|- ( T. -> ( abs ` ( O ^ 2 ) ) = ( abs ` ( 1 - 0 ) ) ) |
| 79 |
68 69 78
|
3eqtrd |
|- ( T. -> ( abs ` ( O - -u 1 ) ) = ( abs ` ( 1 - 0 ) ) ) |
| 80 |
3 5 3 6 5 3 20 30 56 79
|
constrcccl |
|- ( T. -> O e. Constr ) |
| 81 |
80
|
mptru |
|- O e. Constr |