| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cos9thpiminplylem3.1 |
|- O = ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) |
| 2 |
|
ax-icn |
|- _i e. CC |
| 3 |
2
|
a1i |
|- ( T. -> _i e. CC ) |
| 4 |
|
2cnd |
|- ( T. -> 2 e. CC ) |
| 5 |
|
picn |
|- _pi e. CC |
| 6 |
5
|
a1i |
|- ( T. -> _pi e. CC ) |
| 7 |
4 6
|
mulcld |
|- ( T. -> ( 2 x. _pi ) e. CC ) |
| 8 |
3 7
|
mulcld |
|- ( T. -> ( _i x. ( 2 x. _pi ) ) e. CC ) |
| 9 |
|
3cn |
|- 3 e. CC |
| 10 |
9
|
a1i |
|- ( T. -> 3 e. CC ) |
| 11 |
|
3ne0 |
|- 3 =/= 0 |
| 12 |
11
|
a1i |
|- ( T. -> 3 =/= 0 ) |
| 13 |
8 10 12
|
divcld |
|- ( T. -> ( ( _i x. ( 2 x. _pi ) ) / 3 ) e. CC ) |
| 14 |
13
|
efcld |
|- ( T. -> ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) e. CC ) |
| 15 |
1 14
|
eqeltrid |
|- ( T. -> O e. CC ) |
| 16 |
15
|
sqcld |
|- ( T. -> ( O ^ 2 ) e. CC ) |
| 17 |
|
1cnd |
|- ( T. -> 1 e. CC ) |
| 18 |
15 17
|
addcld |
|- ( T. -> ( O + 1 ) e. CC ) |
| 19 |
16 18
|
addcomd |
|- ( T. -> ( ( O ^ 2 ) + ( O + 1 ) ) = ( ( O + 1 ) + ( O ^ 2 ) ) ) |
| 20 |
15 17
|
addcomd |
|- ( T. -> ( O + 1 ) = ( 1 + O ) ) |
| 21 |
20
|
oveq1d |
|- ( T. -> ( ( O + 1 ) + ( O ^ 2 ) ) = ( ( 1 + O ) + ( O ^ 2 ) ) ) |
| 22 |
|
oveq2 |
|- ( n = 0 -> ( O ^ n ) = ( O ^ 0 ) ) |
| 23 |
15
|
mptru |
|- O e. CC |
| 24 |
23
|
a1i |
|- ( n = 0 -> O e. CC ) |
| 25 |
24
|
exp0d |
|- ( n = 0 -> ( O ^ 0 ) = 1 ) |
| 26 |
22 25
|
eqtrd |
|- ( n = 0 -> ( O ^ n ) = 1 ) |
| 27 |
|
oveq2 |
|- ( n = 1 -> ( O ^ n ) = ( O ^ 1 ) ) |
| 28 |
23
|
a1i |
|- ( n = 1 -> O e. CC ) |
| 29 |
28
|
exp1d |
|- ( n = 1 -> ( O ^ 1 ) = O ) |
| 30 |
27 29
|
eqtrd |
|- ( n = 1 -> ( O ^ n ) = O ) |
| 31 |
|
oveq2 |
|- ( n = 2 -> ( O ^ n ) = ( O ^ 2 ) ) |
| 32 |
17 15 16
|
3jca |
|- ( T. -> ( 1 e. CC /\ O e. CC /\ ( O ^ 2 ) e. CC ) ) |
| 33 |
|
0cnd |
|- ( T. -> 0 e. CC ) |
| 34 |
33 17 4
|
3jca |
|- ( T. -> ( 0 e. CC /\ 1 e. CC /\ 2 e. CC ) ) |
| 35 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 36 |
35
|
a1i |
|- ( T. -> 1 =/= 0 ) |
| 37 |
36
|
necomd |
|- ( T. -> 0 =/= 1 ) |
| 38 |
|
2ne0 |
|- 2 =/= 0 |
| 39 |
38
|
a1i |
|- ( T. -> 2 =/= 0 ) |
| 40 |
39
|
necomd |
|- ( T. -> 0 =/= 2 ) |
| 41 |
|
1ne2 |
|- 1 =/= 2 |
| 42 |
41
|
a1i |
|- ( T. -> 1 =/= 2 ) |
| 43 |
26 30 31 32 34 37 40 42
|
sumtp |
|- ( T. -> sum_ n e. { 0 , 1 , 2 } ( O ^ n ) = ( ( 1 + O ) + ( O ^ 2 ) ) ) |
| 44 |
|
3m1e2 |
|- ( 3 - 1 ) = 2 |
| 45 |
44
|
oveq2i |
|- ( 0 ... ( 3 - 1 ) ) = ( 0 ... 2 ) |
| 46 |
|
fz0tp |
|- ( 0 ... 2 ) = { 0 , 1 , 2 } |
| 47 |
45 46
|
eqtri |
|- ( 0 ... ( 3 - 1 ) ) = { 0 , 1 , 2 } |
| 48 |
47
|
sumeq1i |
|- sum_ n e. ( 0 ... ( 3 - 1 ) ) ( O ^ n ) = sum_ n e. { 0 , 1 , 2 } ( O ^ n ) |
| 49 |
1
|
a1i |
|- ( T. -> O = ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) ) |
| 50 |
|
ine0 |
|- _i =/= 0 |
| 51 |
50
|
a1i |
|- ( T. -> _i =/= 0 ) |
| 52 |
|
pine0 |
|- _pi =/= 0 |
| 53 |
52
|
a1i |
|- ( T. -> _pi =/= 0 ) |
| 54 |
4 6 39 53
|
mulne0d |
|- ( T. -> ( 2 x. _pi ) =/= 0 ) |
| 55 |
3 7 51 54
|
mulne0d |
|- ( T. -> ( _i x. ( 2 x. _pi ) ) =/= 0 ) |
| 56 |
8 10 8 12 55
|
divdiv32d |
|- ( T. -> ( ( ( _i x. ( 2 x. _pi ) ) / 3 ) / ( _i x. ( 2 x. _pi ) ) ) = ( ( ( _i x. ( 2 x. _pi ) ) / ( _i x. ( 2 x. _pi ) ) ) / 3 ) ) |
| 57 |
8 55
|
dividd |
|- ( T. -> ( ( _i x. ( 2 x. _pi ) ) / ( _i x. ( 2 x. _pi ) ) ) = 1 ) |
| 58 |
57
|
oveq1d |
|- ( T. -> ( ( ( _i x. ( 2 x. _pi ) ) / ( _i x. ( 2 x. _pi ) ) ) / 3 ) = ( 1 / 3 ) ) |
| 59 |
56 58
|
eqtrd |
|- ( T. -> ( ( ( _i x. ( 2 x. _pi ) ) / 3 ) / ( _i x. ( 2 x. _pi ) ) ) = ( 1 / 3 ) ) |
| 60 |
|
3re |
|- 3 e. RR |
| 61 |
60
|
a1i |
|- ( T. -> 3 e. RR ) |
| 62 |
|
1lt3 |
|- 1 < 3 |
| 63 |
62
|
a1i |
|- ( T. -> 1 < 3 ) |
| 64 |
|
recnz |
|- ( ( 3 e. RR /\ 1 < 3 ) -> -. ( 1 / 3 ) e. ZZ ) |
| 65 |
61 63 64
|
syl2anc |
|- ( T. -> -. ( 1 / 3 ) e. ZZ ) |
| 66 |
59 65
|
eqneltrd |
|- ( T. -> -. ( ( ( _i x. ( 2 x. _pi ) ) / 3 ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) |
| 67 |
|
efeq1 |
|- ( ( ( _i x. ( 2 x. _pi ) ) / 3 ) e. CC -> ( ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) = 1 <-> ( ( ( _i x. ( 2 x. _pi ) ) / 3 ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) ) |
| 68 |
67
|
necon3abid |
|- ( ( ( _i x. ( 2 x. _pi ) ) / 3 ) e. CC -> ( ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) =/= 1 <-> -. ( ( ( _i x. ( 2 x. _pi ) ) / 3 ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) ) |
| 69 |
68
|
biimpar |
|- ( ( ( ( _i x. ( 2 x. _pi ) ) / 3 ) e. CC /\ -. ( ( ( _i x. ( 2 x. _pi ) ) / 3 ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) -> ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) =/= 1 ) |
| 70 |
13 66 69
|
syl2anc |
|- ( T. -> ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) =/= 1 ) |
| 71 |
49 70
|
eqnetrd |
|- ( T. -> O =/= 1 ) |
| 72 |
|
3nn0 |
|- 3 e. NN0 |
| 73 |
72
|
a1i |
|- ( T. -> 3 e. NN0 ) |
| 74 |
15 71 73
|
geoser |
|- ( T. -> sum_ n e. ( 0 ... ( 3 - 1 ) ) ( O ^ n ) = ( ( 1 - ( O ^ 3 ) ) / ( 1 - O ) ) ) |
| 75 |
49
|
oveq1d |
|- ( T. -> ( O ^ 3 ) = ( ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) ^ 3 ) ) |
| 76 |
73
|
nn0zd |
|- ( T. -> 3 e. ZZ ) |
| 77 |
|
efexp |
|- ( ( ( ( _i x. ( 2 x. _pi ) ) / 3 ) e. CC /\ 3 e. ZZ ) -> ( exp ` ( 3 x. ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) ) = ( ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) ^ 3 ) ) |
| 78 |
13 76 77
|
syl2anc |
|- ( T. -> ( exp ` ( 3 x. ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) ) = ( ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) ^ 3 ) ) |
| 79 |
8 10 12
|
divcan2d |
|- ( T. -> ( 3 x. ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) = ( _i x. ( 2 x. _pi ) ) ) |
| 80 |
79
|
fveq2d |
|- ( T. -> ( exp ` ( 3 x. ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) ) = ( exp ` ( _i x. ( 2 x. _pi ) ) ) ) |
| 81 |
|
ef2pi |
|- ( exp ` ( _i x. ( 2 x. _pi ) ) ) = 1 |
| 82 |
80 81
|
eqtrdi |
|- ( T. -> ( exp ` ( 3 x. ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) ) = 1 ) |
| 83 |
75 78 82
|
3eqtr2d |
|- ( T. -> ( O ^ 3 ) = 1 ) |
| 84 |
83
|
oveq2d |
|- ( T. -> ( 1 - ( O ^ 3 ) ) = ( 1 - 1 ) ) |
| 85 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 86 |
84 85
|
eqtrdi |
|- ( T. -> ( 1 - ( O ^ 3 ) ) = 0 ) |
| 87 |
86
|
oveq1d |
|- ( T. -> ( ( 1 - ( O ^ 3 ) ) / ( 1 - O ) ) = ( 0 / ( 1 - O ) ) ) |
| 88 |
17 15
|
subcld |
|- ( T. -> ( 1 - O ) e. CC ) |
| 89 |
71
|
necomd |
|- ( T. -> 1 =/= O ) |
| 90 |
17 15 89
|
subne0d |
|- ( T. -> ( 1 - O ) =/= 0 ) |
| 91 |
88 90
|
div0d |
|- ( T. -> ( 0 / ( 1 - O ) ) = 0 ) |
| 92 |
74 87 91
|
3eqtrd |
|- ( T. -> sum_ n e. ( 0 ... ( 3 - 1 ) ) ( O ^ n ) = 0 ) |
| 93 |
48 92
|
eqtr3id |
|- ( T. -> sum_ n e. { 0 , 1 , 2 } ( O ^ n ) = 0 ) |
| 94 |
21 43 93
|
3eqtr2d |
|- ( T. -> ( ( O + 1 ) + ( O ^ 2 ) ) = 0 ) |
| 95 |
19 94
|
eqtrd |
|- ( T. -> ( ( O ^ 2 ) + ( O + 1 ) ) = 0 ) |
| 96 |
95
|
mptru |
|- ( ( O ^ 2 ) + ( O + 1 ) ) = 0 |