| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cos9thpiminplylem3.1 |
|- O = ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) |
| 2 |
|
cos9thpiminplylem4.2 |
|- Z = ( O ^c ( 1 / 3 ) ) |
| 3 |
|
ax-icn |
|- _i e. CC |
| 4 |
|
2cn |
|- 2 e. CC |
| 5 |
|
picn |
|- _pi e. CC |
| 6 |
4 5
|
mulcli |
|- ( 2 x. _pi ) e. CC |
| 7 |
3 6
|
mulcli |
|- ( _i x. ( 2 x. _pi ) ) e. CC |
| 8 |
|
3cn |
|- 3 e. CC |
| 9 |
|
3ne0 |
|- 3 =/= 0 |
| 10 |
7 8 9
|
divcli |
|- ( ( _i x. ( 2 x. _pi ) ) / 3 ) e. CC |
| 11 |
|
efcl |
|- ( ( ( _i x. ( 2 x. _pi ) ) / 3 ) e. CC -> ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) e. CC ) |
| 12 |
10 11
|
ax-mp |
|- ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) e. CC |
| 13 |
1 12
|
eqeltri |
|- O e. CC |
| 14 |
8 9
|
reccli |
|- ( 1 / 3 ) e. CC |
| 15 |
|
cxpcl |
|- ( ( O e. CC /\ ( 1 / 3 ) e. CC ) -> ( O ^c ( 1 / 3 ) ) e. CC ) |
| 16 |
13 14 15
|
mp2an |
|- ( O ^c ( 1 / 3 ) ) e. CC |
| 17 |
2 16
|
eqeltri |
|- Z e. CC |
| 18 |
|
3nn0 |
|- 3 e. NN0 |
| 19 |
|
2nn0 |
|- 2 e. NN0 |
| 20 |
|
expmul |
|- ( ( Z e. CC /\ 3 e. NN0 /\ 2 e. NN0 ) -> ( Z ^ ( 3 x. 2 ) ) = ( ( Z ^ 3 ) ^ 2 ) ) |
| 21 |
17 18 19 20
|
mp3an |
|- ( Z ^ ( 3 x. 2 ) ) = ( ( Z ^ 3 ) ^ 2 ) |
| 22 |
|
3t2e6 |
|- ( 3 x. 2 ) = 6 |
| 23 |
22
|
oveq2i |
|- ( Z ^ ( 3 x. 2 ) ) = ( Z ^ 6 ) |
| 24 |
2
|
oveq1i |
|- ( Z ^ 3 ) = ( ( O ^c ( 1 / 3 ) ) ^ 3 ) |
| 25 |
|
cxpmul2 |
|- ( ( O e. CC /\ ( 1 / 3 ) e. CC /\ 3 e. NN0 ) -> ( O ^c ( ( 1 / 3 ) x. 3 ) ) = ( ( O ^c ( 1 / 3 ) ) ^ 3 ) ) |
| 26 |
13 14 18 25
|
mp3an |
|- ( O ^c ( ( 1 / 3 ) x. 3 ) ) = ( ( O ^c ( 1 / 3 ) ) ^ 3 ) |
| 27 |
24 26
|
eqtr4i |
|- ( Z ^ 3 ) = ( O ^c ( ( 1 / 3 ) x. 3 ) ) |
| 28 |
|
ax-1cn |
|- 1 e. CC |
| 29 |
28 8 9
|
divcan1i |
|- ( ( 1 / 3 ) x. 3 ) = 1 |
| 30 |
29
|
oveq2i |
|- ( O ^c ( ( 1 / 3 ) x. 3 ) ) = ( O ^c 1 ) |
| 31 |
|
cxp1 |
|- ( O e. CC -> ( O ^c 1 ) = O ) |
| 32 |
13 31
|
ax-mp |
|- ( O ^c 1 ) = O |
| 33 |
27 30 32
|
3eqtri |
|- ( Z ^ 3 ) = O |
| 34 |
33
|
oveq1i |
|- ( ( Z ^ 3 ) ^ 2 ) = ( O ^ 2 ) |
| 35 |
21 23 34
|
3eqtr3i |
|- ( Z ^ 6 ) = ( O ^ 2 ) |
| 36 |
35 33
|
oveq12i |
|- ( ( Z ^ 6 ) + ( Z ^ 3 ) ) = ( ( O ^ 2 ) + O ) |
| 37 |
13
|
sqcli |
|- ( O ^ 2 ) e. CC |
| 38 |
37 13
|
addcli |
|- ( ( O ^ 2 ) + O ) e. CC |
| 39 |
38 28
|
pm3.2i |
|- ( ( ( O ^ 2 ) + O ) e. CC /\ 1 e. CC ) |
| 40 |
37 13 28
|
addassi |
|- ( ( ( O ^ 2 ) + O ) + 1 ) = ( ( O ^ 2 ) + ( O + 1 ) ) |
| 41 |
1
|
cos9thpiminplylem3 |
|- ( ( O ^ 2 ) + ( O + 1 ) ) = 0 |
| 42 |
40 41
|
eqtri |
|- ( ( ( O ^ 2 ) + O ) + 1 ) = 0 |
| 43 |
|
addeq0 |
|- ( ( ( ( O ^ 2 ) + O ) e. CC /\ 1 e. CC ) -> ( ( ( ( O ^ 2 ) + O ) + 1 ) = 0 <-> ( ( O ^ 2 ) + O ) = -u 1 ) ) |
| 44 |
43
|
biimpa |
|- ( ( ( ( ( O ^ 2 ) + O ) e. CC /\ 1 e. CC ) /\ ( ( ( O ^ 2 ) + O ) + 1 ) = 0 ) -> ( ( O ^ 2 ) + O ) = -u 1 ) |
| 45 |
39 42 44
|
mp2an |
|- ( ( O ^ 2 ) + O ) = -u 1 |
| 46 |
36 45
|
eqtri |
|- ( ( Z ^ 6 ) + ( Z ^ 3 ) ) = -u 1 |