Metamath Proof Explorer


Theorem cos9thpiminplylem4

Description: Lemma for cos9thpiminply . (Contributed by Thierry Arnoux, 14-Nov-2025)

Ref Expression
Hypotheses cos9thpiminplylem3.1 O = e i 2 π 3
cos9thpiminplylem4.2 Z = O 1 3
Assertion cos9thpiminplylem4 Z 6 + Z 3 = 1

Proof

Step Hyp Ref Expression
1 cos9thpiminplylem3.1 O = e i 2 π 3
2 cos9thpiminplylem4.2 Z = O 1 3
3 ax-icn i
4 2cn 2
5 picn π
6 4 5 mulcli 2 π
7 3 6 mulcli i 2 π
8 3cn 3
9 3ne0 3 0
10 7 8 9 divcli i 2 π 3
11 efcl i 2 π 3 e i 2 π 3
12 10 11 ax-mp e i 2 π 3
13 1 12 eqeltri O
14 8 9 reccli 1 3
15 cxpcl O 1 3 O 1 3
16 13 14 15 mp2an O 1 3
17 2 16 eqeltri Z
18 3nn0 3 0
19 2nn0 2 0
20 expmul Z 3 0 2 0 Z 3 2 = Z 3 2
21 17 18 19 20 mp3an Z 3 2 = Z 3 2
22 3t2e6 3 2 = 6
23 22 oveq2i Z 3 2 = Z 6
24 2 oveq1i Z 3 = O 1 3 3
25 cxpmul2 O 1 3 3 0 O 1 3 3 = O 1 3 3
26 13 14 18 25 mp3an O 1 3 3 = O 1 3 3
27 24 26 eqtr4i Z 3 = O 1 3 3
28 ax-1cn 1
29 28 8 9 divcan1i 1 3 3 = 1
30 29 oveq2i O 1 3 3 = O 1
31 cxp1 O O 1 = O
32 13 31 ax-mp O 1 = O
33 27 30 32 3eqtri Z 3 = O
34 33 oveq1i Z 3 2 = O 2
35 21 23 34 3eqtr3i Z 6 = O 2
36 35 33 oveq12i Z 6 + Z 3 = O 2 + O
37 13 sqcli O 2
38 37 13 addcli O 2 + O
39 38 28 pm3.2i O 2 + O 1
40 37 13 28 addassi O 2 + O + 1 = O 2 + O + 1
41 1 cos9thpiminplylem3 O 2 + O + 1 = 0
42 40 41 eqtri O 2 + O + 1 = 0
43 addeq0 O 2 + O 1 O 2 + O + 1 = 0 O 2 + O = 1
44 43 biimpa O 2 + O 1 O 2 + O + 1 = 0 O 2 + O = 1
45 39 42 44 mp2an O 2 + O = 1
46 36 45 eqtri Z 6 + Z 3 = 1