Metamath Proof Explorer


Theorem cos9thpiminply

Description: The polynomial ( ( X ^ 3 ) + ( ( -u 3 x. X ) + 1 ) ) is the minimal polynomial for A over QQ , and its degree is 3 . (Contributed by Thierry Arnoux, 14-Nov-2025)

Ref Expression
Hypotheses cos9thpiminplylem3.1 O = e i 2 π 3
cos9thpiminplylem4.2 Z = O 1 3
cos9thpiminplylem5.3 A = Z + 1 Z
cos9thpiminply.q Q = fld 𝑠
cos9thpiminply.4 + ˙ = + P
cos9thpiminply.5 · ˙ = P
cos9thpiminply.6 × ˙ = mulGrp P
cos9thpiminply.p P = Poly 1 Q
cos9thpiminply.k K = algSc P
cos9thpiminply.x X = var 1 Q
cos9thpiminply.d D = deg 1 Q
cos9thpiminply.f F = 3 × ˙ X + ˙ K 3 · ˙ X + ˙ K 1
cos9thpiminply.m M = fld minPoly
Assertion cos9thpiminply F = M A D F = 3

Proof

Step Hyp Ref Expression
1 cos9thpiminplylem3.1 O = e i 2 π 3
2 cos9thpiminplylem4.2 Z = O 1 3
3 cos9thpiminplylem5.3 A = Z + 1 Z
4 cos9thpiminply.q Q = fld 𝑠
5 cos9thpiminply.4 + ˙ = + P
6 cos9thpiminply.5 · ˙ = P
7 cos9thpiminply.6 × ˙ = mulGrp P
8 cos9thpiminply.p P = Poly 1 Q
9 cos9thpiminply.k K = algSc P
10 cos9thpiminply.x X = var 1 Q
11 cos9thpiminply.d D = deg 1 Q
12 cos9thpiminply.f F = 3 × ˙ X + ˙ K 3 · ˙ X + ˙ K 1
13 cos9thpiminply.m M = fld minPoly
14 eqid fld evalSub 1 = fld evalSub 1
15 4 fveq2i Poly 1 Q = Poly 1 fld 𝑠
16 8 15 eqtri P = Poly 1 fld 𝑠
17 cnfldbas = Base fld
18 cnfldfld fld Field
19 18 a1i fld Field
20 cndrng fld DivRing
21 qsubdrg SubRing fld fld 𝑠 DivRing
22 21 simpli SubRing fld
23 21 simpri fld 𝑠 DivRing
24 issdrg SubDRing fld fld DivRing SubRing fld fld 𝑠 DivRing
25 20 22 23 24 mpbir3an SubDRing fld
26 25 a1i SubDRing fld
27 ax-icn i
28 27 a1i i
29 2cnd 2
30 picn π
31 30 a1i π
32 29 31 mulcld 2 π
33 28 32 mulcld i 2 π
34 3cn 3
35 34 a1i 3
36 3ne0 3 0
37 36 a1i 3 0
38 33 35 37 divcld i 2 π 3
39 38 efcld e i 2 π 3
40 1 39 eqeltrid O
41 35 37 reccld 1 3
42 40 41 cxpcld O 1 3
43 2 42 eqeltrid Z
44 2 a1i Z = O 1 3
45 1 a1i O = e i 2 π 3
46 38 efne0d e i 2 π 3 0
47 45 46 eqnetrd O 0
48 40 47 41 cxpne0d O 1 3 0
49 44 48 eqnetrd Z 0
50 43 49 reccld 1 Z
51 43 50 addcld Z + 1 Z
52 3 51 eqeltrid A
53 cnfld0 0 = 0 fld
54 eqid 0 P = 0 P
55 1 2 3 4 5 6 7 8 9 10 11 12 52 cos9thpiminplylem6 fld evalSub 1 F A = A 3 + -3 A + 1
56 1 2 3 cos9thpiminplylem5 A 3 + -3 A + 1 = 0
57 55 56 eqtrdi fld evalSub 1 F A = 0
58 4 qrng0 0 = 0 Q
59 eqid eval 1 Q = eval 1 Q
60 eqid Base P = Base P
61 4 qfld Q Field
62 61 a1i Q Field
63 4 qdrng Q DivRing
64 63 a1i Q DivRing
65 64 drngringd Q Ring
66 8 ply1ring Q Ring P Ring
67 65 66 syl P Ring
68 67 ringgrpd P Grp
69 eqid mulGrp P = mulGrp P
70 69 60 mgpbas Base P = Base mulGrp P
71 69 ringmgp P Ring mulGrp P Mnd
72 67 71 syl mulGrp P Mnd
73 3nn0 3 0
74 73 a1i 3 0
75 10 8 60 vr1cl Q Ring X Base P
76 65 75 syl X Base P
77 70 7 72 74 76 mulgnn0cld 3 × ˙ X Base P
78 8 ply1sca Q DivRing Q = Scalar P
79 63 78 ax-mp Q = Scalar P
80 8 ply1lmod Q Ring P LMod
81 65 80 syl P LMod
82 4 qrngbas = Base Q
83 9 79 67 81 82 60 asclf K : Base P
84 74 nn0zd 3
85 zq 3 3
86 qnegcl 3 3
87 84 85 86 3syl 3
88 83 87 ffvelcdmd K 3 Base P
89 60 6 67 88 76 ringcld K 3 · ˙ X Base P
90 1zzd 1
91 zq 1 1
92 90 91 syl 1
93 83 92 ffvelcdmd K 1 Base P
94 60 5 68 89 93 grpcld K 3 · ˙ X + ˙ K 1 Base P
95 60 5 68 77 94 grpcld 3 × ˙ X + ˙ K 3 · ˙ X + ˙ K 1 Base P
96 12 95 eqeltrid F Base P
97 62 fldcrngd Q CRing
98 59 8 60 97 82 96 evl1fvf eval 1 Q F :
99 98 ffnd eval 1 Q F Fn
100 fniniseg2 eval 1 Q F Fn eval 1 Q F -1 0 = x | eval 1 Q F x = 0
101 99 100 syl eval 1 Q F -1 0 = x | eval 1 Q F x = 0
102 59 82 evl1fval1 eval 1 Q = Q evalSub 1
103 102 a1i x eval 1 Q = Q evalSub 1
104 103 fveq1d x eval 1 Q F = Q evalSub 1 F
105 104 fveq1d x eval 1 Q F x = Q evalSub 1 F x
106 eqid Q evalSub 1 = Q evalSub 1
107 cncrng fld CRing
108 107 a1i x fld CRing
109 22 a1i x SubRing fld
110 97 mptru Q CRing
111 110 a1i x Q CRing
112 111 crngringd x Q Ring
113 82 subrgid Q Ring SubRing Q
114 112 113 syl x SubRing Q
115 96 mptru F Base P
116 115 a1i x F Base P
117 4 14 106 8 4 60 108 109 114 116 ressply1evls1 x Q evalSub 1 F = fld evalSub 1 F
118 117 fveq1d x Q evalSub 1 F x = fld evalSub 1 F x
119 fvres x fld evalSub 1 F x = fld evalSub 1 F x
120 118 119 eqtr2d x fld evalSub 1 F x = Q evalSub 1 F x
121 qcn x x
122 1 2 3 4 5 6 7 8 9 10 11 12 121 cos9thpiminplylem6 x fld evalSub 1 F x = x 3 + -3 x + 1
123 105 120 122 3eqtr2d x eval 1 Q F x = x 3 + -3 x + 1
124 id x x
125 124 cos9thpiminplylem2 x x 3 + -3 x + 1 0
126 123 125 eqnetrd x eval 1 Q F x 0
127 126 neneqd x ¬ eval 1 Q F x = 0
128 127 rgen x ¬ eval 1 Q F x = 0
129 128 a1i x ¬ eval 1 Q F x = 0
130 rabeq0 x | eval 1 Q F x = 0 = x ¬ eval 1 Q F x = 0
131 129 130 sylibr x | eval 1 Q F x = 0 =
132 101 131 eqtrd eval 1 Q F -1 0 =
133 12 a1i F = 3 × ˙ X + ˙ K 3 · ˙ X + ˙ K 1
134 133 fveq2d D F = D 3 × ˙ X + ˙ K 3 · ˙ X + ˙ K 1
135 1lt3 1 < 3
136 135 a1i 1 < 3
137 0lt1 0 < 1
138 137 a1i 0 < 1
139 138 gt0ne0d 1 0
140 11 8 82 9 58 deg1scl Q Ring 1 1 0 D K 1 = 0
141 65 92 139 140 syl3anc D K 1 = 0
142 drngdomn Q DivRing Q Domn
143 63 142 mp1i Q Domn
144 35 37 negne0d 3 0
145 8 9 58 54 82 ply1scln0 Q Ring 3 3 0 K 3 0 P
146 65 87 144 145 syl3anc K 3 0 P
147 107 a1i fld CRing
148 drngnzr fld DivRing fld NzRing
149 20 148 mp1i fld NzRing
150 22 a1i SubRing fld
151 10 54 4 8 147 149 150 vr1nz X 0 P
152 11 8 60 6 54 143 88 146 76 151 deg1mul D K 3 · ˙ X = D K 3 + D X
153 11 8 82 9 58 deg1scl Q Ring 3 3 0 D K 3 = 0
154 65 87 144 153 syl3anc D K 3 = 0
155 drngnzr Q DivRing Q NzRing
156 63 155 mp1i Q NzRing
157 11 8 10 156 deg1vr D X = 1
158 154 157 oveq12d D K 3 + D X = 0 + 1
159 1cnd 1
160 159 addlidd 0 + 1 = 1
161 152 158 160 3eqtrd D K 3 · ˙ X = 1
162 138 141 161 3brtr4d D K 1 < D K 3 · ˙ X
163 8 11 65 60 5 89 93 162 deg1add D K 3 · ˙ X + ˙ K 1 = D K 3 · ˙ X
164 163 161 eqtrd D K 3 · ˙ X + ˙ K 1 = 1
165 11 8 10 69 7 deg1pw Q NzRing 3 0 D 3 × ˙ X = 3
166 156 74 165 syl2anc D 3 × ˙ X = 3
167 136 164 166 3brtr4d D K 3 · ˙ X + ˙ K 1 < D 3 × ˙ X
168 8 11 65 60 5 77 94 167 deg1add D 3 × ˙ X + ˙ K 3 · ˙ X + ˙ K 1 = D 3 × ˙ X
169 134 168 166 3eqtrd D F = 3
170 58 59 11 8 60 62 96 132 169 ply1dg3rt0irred F Irred P
171 eqid Irred P = Irred P
172 171 54 irredn0 P Ring F Irred P F 0 P
173 67 170 172 syl2anc F 0 P
174 169 fveq2d coe 1 F D F = coe 1 F 3
175 133 fveq2d coe 1 F = coe 1 3 × ˙ X + ˙ K 3 · ˙ X + ˙ K 1
176 175 fveq1d coe 1 F 3 = coe 1 3 × ˙ X + ˙ K 3 · ˙ X + ˙ K 1 3
177 cnfldadd + = + fld
178 4 177 ressplusg SubRing fld + = + Q
179 22 178 ax-mp + = + Q
180 8 60 5 179 coe1addfv Q Ring 3 × ˙ X Base P K 3 · ˙ X + ˙ K 1 Base P 3 0 coe 1 3 × ˙ X + ˙ K 3 · ˙ X + ˙ K 1 3 = coe 1 3 × ˙ X 3 + coe 1 K 3 · ˙ X + ˙ K 1 3
181 65 77 94 74 180 syl31anc coe 1 3 × ˙ X + ˙ K 3 · ˙ X + ˙ K 1 3 = coe 1 3 × ˙ X 3 + coe 1 K 3 · ˙ X + ˙ K 1 3
182 iftrue i = 3 if i = 3 1 0 = 1
183 4 qrng1 1 = 1 Q
184 8 10 7 65 74 58 183 coe1mon coe 1 3 × ˙ X = i 0 if i = 3 1 0
185 182 184 74 159 fvmptd4 coe 1 3 × ˙ X 3 = 1
186 8 60 5 179 coe1addfv Q Ring K 3 · ˙ X Base P K 1 Base P 3 0 coe 1 K 3 · ˙ X + ˙ K 1 3 = coe 1 K 3 · ˙ X 3 + coe 1 K 1 3
187 65 89 93 74 186 syl31anc coe 1 K 3 · ˙ X + ˙ K 1 3 = coe 1 K 3 · ˙ X 3 + coe 1 K 1 3
188 8 ply1assa Q CRing P AssAlg
189 97 188 syl P AssAlg
190 eqid P = P
191 9 79 82 60 6 190 asclmul1 P AssAlg 3 X Base P K 3 · ˙ X = -3 P X
192 189 87 76 191 syl3anc K 3 · ˙ X = -3 P X
193 70 7 mulg1 X Base P 1 × ˙ X = X
194 76 193 syl 1 × ˙ X = X
195 194 oveq2d -3 P 1 × ˙ X = -3 P X
196 192 195 eqtr4d K 3 · ˙ X = -3 P 1 × ˙ X
197 196 fveq2d coe 1 K 3 · ˙ X = coe 1 -3 P 1 × ˙ X
198 197 fveq1d coe 1 K 3 · ˙ X 3 = coe 1 -3 P 1 × ˙ X 3
199 1nn0 1 0
200 199 a1i 1 0
201 1red 1
202 201 136 ltned 1 3
203 58 82 8 10 190 69 7 65 87 200 74 202 coe1tmfv2 coe 1 -3 P 1 × ˙ X 3 = 0
204 198 203 eqtrd coe 1 K 3 · ˙ X 3 = 0
205 8 9 82 58 coe1scl Q Ring 1 coe 1 K 1 = i 0 if i = 0 1 0
206 65 92 205 syl2anc coe 1 K 1 = i 0 if i = 0 1 0
207 simpr i = 3 i = 3
208 36 a1i i = 3 3 0
209 207 208 eqnetrd i = 3 i 0
210 209 neneqd i = 3 ¬ i = 0
211 210 iffalsed i = 3 if i = 0 1 0 = 0
212 0zd 0
213 206 211 74 212 fvmptd coe 1 K 1 3 = 0
214 204 213 oveq12d coe 1 K 3 · ˙ X 3 + coe 1 K 1 3 = 0 + 0
215 00id 0 + 0 = 0
216 215 a1i 0 + 0 = 0
217 187 214 216 3eqtrd coe 1 K 3 · ˙ X + ˙ K 1 3 = 0
218 185 217 oveq12d coe 1 3 × ˙ X 3 + coe 1 K 3 · ˙ X + ˙ K 1 3 = 1 + 0
219 159 addridd 1 + 0 = 1
220 218 219 eqtrd coe 1 3 × ˙ X 3 + coe 1 K 3 · ˙ X + ˙ K 1 3 = 1
221 176 181 220 3eqtrd coe 1 F 3 = 1
222 174 221 eqtrd coe 1 F D F = 1
223 4 fveq2i Monic 1p Q = Monic 1p fld 𝑠
224 223 eqcomi Monic 1p fld 𝑠 = Monic 1p Q
225 8 60 54 11 224 183 ismon1p F Monic 1p fld 𝑠 F Base P F 0 P coe 1 F D F = 1
226 96 173 222 225 syl3anbrc F Monic 1p fld 𝑠
227 14 16 17 19 26 52 53 13 54 57 170 226 irredminply F = M A
228 227 169 jca F = M A D F = 3
229 228 mptru F = M A D F = 3