Metamath Proof Explorer


Theorem cos9thpiminplylem6

Description: Evaluation of the polynomial ( ( X ^ 3 ) + ( ( -u 3 x. X ) + 1 ) ) . (Contributed by Thierry Arnoux, 14-Nov-2025)

Ref Expression
Hypotheses cos9thpiminplylem3.1 O = e i 2 π 3
cos9thpiminplylem4.2 Z = O 1 3
cos9thpiminplylem5.3 A = Z + 1 Z
cos9thpiminply.q Q = fld 𝑠
cos9thpiminply.4 + ˙ = + P
cos9thpiminply.5 · ˙ = P
cos9thpiminply.6 × ˙ = mulGrp P
cos9thpiminply.p P = Poly 1 Q
cos9thpiminply.k K = algSc P
cos9thpiminply.x X = var 1 Q
cos9thpiminply.d D = deg 1 Q
cos9thpiminply.f F = 3 × ˙ X + ˙ K 3 · ˙ X + ˙ K 1
cos9thpiminplylem6.1 φ Y
Assertion cos9thpiminplylem6 φ fld evalSub 1 F Y = Y 3 + -3 Y + 1

Proof

Step Hyp Ref Expression
1 cos9thpiminplylem3.1 O = e i 2 π 3
2 cos9thpiminplylem4.2 Z = O 1 3
3 cos9thpiminplylem5.3 A = Z + 1 Z
4 cos9thpiminply.q Q = fld 𝑠
5 cos9thpiminply.4 + ˙ = + P
6 cos9thpiminply.5 · ˙ = P
7 cos9thpiminply.6 × ˙ = mulGrp P
8 cos9thpiminply.p P = Poly 1 Q
9 cos9thpiminply.k K = algSc P
10 cos9thpiminply.x X = var 1 Q
11 cos9thpiminply.d D = deg 1 Q
12 cos9thpiminply.f F = 3 × ˙ X + ˙ K 3 · ˙ X + ˙ K 1
13 cos9thpiminplylem6.1 φ Y
14 12 fveq2i fld evalSub 1 F = fld evalSub 1 3 × ˙ X + ˙ K 3 · ˙ X + ˙ K 1
15 14 fveq1i fld evalSub 1 F Y = fld evalSub 1 3 × ˙ X + ˙ K 3 · ˙ X + ˙ K 1 Y
16 eqid fld evalSub 1 = fld evalSub 1
17 cnfldbas = Base fld
18 eqid Base P = Base P
19 cnfldadd + = + fld
20 cncrng fld CRing
21 20 a1i φ fld CRing
22 qsubdrg SubRing fld fld 𝑠 DivRing
23 22 simpli SubRing fld
24 23 a1i φ SubRing fld
25 eqid mulGrp P = mulGrp P
26 25 18 mgpbas Base P = Base mulGrp P
27 4 qdrng Q DivRing
28 27 a1i φ Q DivRing
29 28 drngringd φ Q Ring
30 8 ply1ring Q Ring P Ring
31 29 30 syl φ P Ring
32 25 ringmgp P Ring mulGrp P Mnd
33 31 32 syl φ mulGrp P Mnd
34 3nn0 3 0
35 34 a1i φ 3 0
36 10 8 18 vr1cl Q Ring X Base P
37 29 36 syl φ X Base P
38 26 7 33 35 37 mulgnn0cld φ 3 × ˙ X Base P
39 31 ringgrpd φ P Grp
40 8 ply1sca Q DivRing Q = Scalar P
41 27 40 ax-mp Q = Scalar P
42 8 ply1lmod Q Ring P LMod
43 29 42 syl φ P LMod
44 4 qrngbas = Base Q
45 9 41 31 43 44 18 asclf φ K : Base P
46 35 nn0zd φ 3
47 zq 3 3
48 46 47 syl φ 3
49 qnegcl 3 3
50 48 49 syl φ 3
51 45 50 ffvelcdmd φ K 3 Base P
52 18 6 31 51 37 ringcld φ K 3 · ˙ X Base P
53 1zzd φ 1
54 zq 1 1
55 53 54 syl φ 1
56 45 55 ffvelcdmd φ K 1 Base P
57 18 5 39 52 56 grpcld φ K 3 · ˙ X + ˙ K 1 Base P
58 16 17 8 4 18 5 19 21 24 38 57 13 evls1addd φ fld evalSub 1 3 × ˙ X + ˙ K 3 · ˙ X + ˙ K 1 Y = fld evalSub 1 3 × ˙ X Y + fld evalSub 1 K 3 · ˙ X + ˙ K 1 Y
59 eqid mulGrp fld = mulGrp fld
60 16 17 8 4 18 21 24 7 59 35 37 13 evls1expd φ fld evalSub 1 3 × ˙ X Y = 3 mulGrp fld fld evalSub 1 X Y
61 16 10 4 17 21 24 evls1var φ fld evalSub 1 X = I
62 61 fveq1d φ fld evalSub 1 X Y = I Y
63 fvresi Y I Y = Y
64 13 63 syl φ I Y = Y
65 62 64 eqtrd φ fld evalSub 1 X Y = Y
66 65 oveq2d φ 3 mulGrp fld fld evalSub 1 X Y = 3 mulGrp fld Y
67 cnfldexp Y 3 0 3 mulGrp fld Y = Y 3
68 13 34 67 sylancl φ 3 mulGrp fld Y = Y 3
69 60 66 68 3eqtrd φ fld evalSub 1 3 × ˙ X Y = Y 3
70 16 17 8 4 18 5 19 21 24 52 56 13 evls1addd φ fld evalSub 1 K 3 · ˙ X + ˙ K 1 Y = fld evalSub 1 K 3 · ˙ X Y + fld evalSub 1 K 1 Y
71 cnfldmul × = fld
72 16 17 8 4 18 6 71 21 24 51 37 13 evls1muld φ fld evalSub 1 K 3 · ˙ X Y = fld evalSub 1 K 3 Y fld evalSub 1 X Y
73 16 8 4 17 9 21 24 50 13 evls1scafv φ fld evalSub 1 K 3 Y = 3
74 73 65 oveq12d φ fld evalSub 1 K 3 Y fld evalSub 1 X Y = -3 Y
75 72 74 eqtrd φ fld evalSub 1 K 3 · ˙ X Y = -3 Y
76 16 8 4 17 9 21 24 55 13 evls1scafv φ fld evalSub 1 K 1 Y = 1
77 75 76 oveq12d φ fld evalSub 1 K 3 · ˙ X Y + fld evalSub 1 K 1 Y = -3 Y + 1
78 70 77 eqtrd φ fld evalSub 1 K 3 · ˙ X + ˙ K 1 Y = -3 Y + 1
79 69 78 oveq12d φ fld evalSub 1 3 × ˙ X Y + fld evalSub 1 K 3 · ˙ X + ˙ K 1 Y = Y 3 + -3 Y + 1
80 58 79 eqtrd φ fld evalSub 1 3 × ˙ X + ˙ K 3 · ˙ X + ˙ K 1 Y = Y 3 + -3 Y + 1
81 15 80 eqtrid φ fld evalSub 1 F Y = Y 3 + -3 Y + 1