| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cos9thpiminplylem3.1 |
⊢ 𝑂 = ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) |
| 2 |
|
cos9thpiminplylem4.2 |
⊢ 𝑍 = ( 𝑂 ↑𝑐 ( 1 / 3 ) ) |
| 3 |
|
cos9thpiminplylem5.3 |
⊢ 𝐴 = ( 𝑍 + ( 1 / 𝑍 ) ) |
| 4 |
|
cos9thpiminply.q |
⊢ 𝑄 = ( ℂfld ↾s ℚ ) |
| 5 |
|
cos9thpiminply.4 |
⊢ + = ( +g ‘ 𝑃 ) |
| 6 |
|
cos9thpiminply.5 |
⊢ · = ( .r ‘ 𝑃 ) |
| 7 |
|
cos9thpiminply.6 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 8 |
|
cos9thpiminply.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑄 ) |
| 9 |
|
cos9thpiminply.k |
⊢ 𝐾 = ( algSc ‘ 𝑃 ) |
| 10 |
|
cos9thpiminply.x |
⊢ 𝑋 = ( var1 ‘ 𝑄 ) |
| 11 |
|
cos9thpiminply.d |
⊢ 𝐷 = ( deg1 ‘ 𝑄 ) |
| 12 |
|
cos9thpiminply.f |
⊢ 𝐹 = ( ( 3 ↑ 𝑋 ) + ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) |
| 13 |
|
cos9thpiminplylem6.1 |
⊢ ( 𝜑 → 𝑌 ∈ ℂ ) |
| 14 |
12
|
fveq2i |
⊢ ( ( ℂfld evalSub1 ℚ ) ‘ 𝐹 ) = ( ( ℂfld evalSub1 ℚ ) ‘ ( ( 3 ↑ 𝑋 ) + ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ) |
| 15 |
14
|
fveq1i |
⊢ ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝐹 ) ‘ 𝑌 ) = ( ( ( ℂfld evalSub1 ℚ ) ‘ ( ( 3 ↑ 𝑋 ) + ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ) ‘ 𝑌 ) |
| 16 |
|
eqid |
⊢ ( ℂfld evalSub1 ℚ ) = ( ℂfld evalSub1 ℚ ) |
| 17 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 18 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 19 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
| 20 |
|
cncrng |
⊢ ℂfld ∈ CRing |
| 21 |
20
|
a1i |
⊢ ( 𝜑 → ℂfld ∈ CRing ) |
| 22 |
|
qsubdrg |
⊢ ( ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s ℚ ) ∈ DivRing ) |
| 23 |
22
|
simpli |
⊢ ℚ ∈ ( SubRing ‘ ℂfld ) |
| 24 |
23
|
a1i |
⊢ ( 𝜑 → ℚ ∈ ( SubRing ‘ ℂfld ) ) |
| 25 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
| 26 |
25 18
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
| 27 |
4
|
qdrng |
⊢ 𝑄 ∈ DivRing |
| 28 |
27
|
a1i |
⊢ ( 𝜑 → 𝑄 ∈ DivRing ) |
| 29 |
28
|
drngringd |
⊢ ( 𝜑 → 𝑄 ∈ Ring ) |
| 30 |
8
|
ply1ring |
⊢ ( 𝑄 ∈ Ring → 𝑃 ∈ Ring ) |
| 31 |
29 30
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 32 |
25
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 33 |
31 32
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 34 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 35 |
34
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℕ0 ) |
| 36 |
10 8 18
|
vr1cl |
⊢ ( 𝑄 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 37 |
29 36
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 38 |
26 7 33 35 37
|
mulgnn0cld |
⊢ ( 𝜑 → ( 3 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
| 39 |
31
|
ringgrpd |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
| 40 |
8
|
ply1sca |
⊢ ( 𝑄 ∈ DivRing → 𝑄 = ( Scalar ‘ 𝑃 ) ) |
| 41 |
27 40
|
ax-mp |
⊢ 𝑄 = ( Scalar ‘ 𝑃 ) |
| 42 |
8
|
ply1lmod |
⊢ ( 𝑄 ∈ Ring → 𝑃 ∈ LMod ) |
| 43 |
29 42
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
| 44 |
4
|
qrngbas |
⊢ ℚ = ( Base ‘ 𝑄 ) |
| 45 |
9 41 31 43 44 18
|
asclf |
⊢ ( 𝜑 → 𝐾 : ℚ ⟶ ( Base ‘ 𝑃 ) ) |
| 46 |
35
|
nn0zd |
⊢ ( 𝜑 → 3 ∈ ℤ ) |
| 47 |
|
zq |
⊢ ( 3 ∈ ℤ → 3 ∈ ℚ ) |
| 48 |
46 47
|
syl |
⊢ ( 𝜑 → 3 ∈ ℚ ) |
| 49 |
|
qnegcl |
⊢ ( 3 ∈ ℚ → - 3 ∈ ℚ ) |
| 50 |
48 49
|
syl |
⊢ ( 𝜑 → - 3 ∈ ℚ ) |
| 51 |
45 50
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐾 ‘ - 3 ) ∈ ( Base ‘ 𝑃 ) ) |
| 52 |
18 6 31 51 37
|
ringcld |
⊢ ( 𝜑 → ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
| 53 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 54 |
|
zq |
⊢ ( 1 ∈ ℤ → 1 ∈ ℚ ) |
| 55 |
53 54
|
syl |
⊢ ( 𝜑 → 1 ∈ ℚ ) |
| 56 |
45 55
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐾 ‘ 1 ) ∈ ( Base ‘ 𝑃 ) ) |
| 57 |
18 5 39 52 56
|
grpcld |
⊢ ( 𝜑 → ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 58 |
16 17 8 4 18 5 19 21 24 38 57 13
|
evls1addd |
⊢ ( 𝜑 → ( ( ( ℂfld evalSub1 ℚ ) ‘ ( ( 3 ↑ 𝑋 ) + ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ) ‘ 𝑌 ) = ( ( ( ( ℂfld evalSub1 ℚ ) ‘ ( 3 ↑ 𝑋 ) ) ‘ 𝑌 ) + ( ( ( ℂfld evalSub1 ℚ ) ‘ ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ‘ 𝑌 ) ) ) |
| 59 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ℂfld ) ) = ( .g ‘ ( mulGrp ‘ ℂfld ) ) |
| 60 |
16 17 8 4 18 21 24 7 59 35 37 13
|
evls1expd |
⊢ ( 𝜑 → ( ( ( ℂfld evalSub1 ℚ ) ‘ ( 3 ↑ 𝑋 ) ) ‘ 𝑌 ) = ( 3 ( .g ‘ ( mulGrp ‘ ℂfld ) ) ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝑋 ) ‘ 𝑌 ) ) ) |
| 61 |
16 10 4 17 21 24
|
evls1var |
⊢ ( 𝜑 → ( ( ℂfld evalSub1 ℚ ) ‘ 𝑋 ) = ( I ↾ ℂ ) ) |
| 62 |
61
|
fveq1d |
⊢ ( 𝜑 → ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝑋 ) ‘ 𝑌 ) = ( ( I ↾ ℂ ) ‘ 𝑌 ) ) |
| 63 |
|
fvresi |
⊢ ( 𝑌 ∈ ℂ → ( ( I ↾ ℂ ) ‘ 𝑌 ) = 𝑌 ) |
| 64 |
13 63
|
syl |
⊢ ( 𝜑 → ( ( I ↾ ℂ ) ‘ 𝑌 ) = 𝑌 ) |
| 65 |
62 64
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝑋 ) ‘ 𝑌 ) = 𝑌 ) |
| 66 |
65
|
oveq2d |
⊢ ( 𝜑 → ( 3 ( .g ‘ ( mulGrp ‘ ℂfld ) ) ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝑋 ) ‘ 𝑌 ) ) = ( 3 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑌 ) ) |
| 67 |
|
cnfldexp |
⊢ ( ( 𝑌 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 3 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑌 ) = ( 𝑌 ↑ 3 ) ) |
| 68 |
13 34 67
|
sylancl |
⊢ ( 𝜑 → ( 3 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑌 ) = ( 𝑌 ↑ 3 ) ) |
| 69 |
60 66 68
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ℂfld evalSub1 ℚ ) ‘ ( 3 ↑ 𝑋 ) ) ‘ 𝑌 ) = ( 𝑌 ↑ 3 ) ) |
| 70 |
16 17 8 4 18 5 19 21 24 52 56 13
|
evls1addd |
⊢ ( 𝜑 → ( ( ( ℂfld evalSub1 ℚ ) ‘ ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ‘ 𝑌 ) = ( ( ( ( ℂfld evalSub1 ℚ ) ‘ ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ) ‘ 𝑌 ) + ( ( ( ℂfld evalSub1 ℚ ) ‘ ( 𝐾 ‘ 1 ) ) ‘ 𝑌 ) ) ) |
| 71 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
| 72 |
16 17 8 4 18 6 71 21 24 51 37 13
|
evls1muld |
⊢ ( 𝜑 → ( ( ( ℂfld evalSub1 ℚ ) ‘ ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ) ‘ 𝑌 ) = ( ( ( ( ℂfld evalSub1 ℚ ) ‘ ( 𝐾 ‘ - 3 ) ) ‘ 𝑌 ) · ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝑋 ) ‘ 𝑌 ) ) ) |
| 73 |
16 8 4 17 9 21 24 50 13
|
evls1scafv |
⊢ ( 𝜑 → ( ( ( ℂfld evalSub1 ℚ ) ‘ ( 𝐾 ‘ - 3 ) ) ‘ 𝑌 ) = - 3 ) |
| 74 |
73 65
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( ℂfld evalSub1 ℚ ) ‘ ( 𝐾 ‘ - 3 ) ) ‘ 𝑌 ) · ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝑋 ) ‘ 𝑌 ) ) = ( - 3 · 𝑌 ) ) |
| 75 |
72 74
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ℂfld evalSub1 ℚ ) ‘ ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ) ‘ 𝑌 ) = ( - 3 · 𝑌 ) ) |
| 76 |
16 8 4 17 9 21 24 55 13
|
evls1scafv |
⊢ ( 𝜑 → ( ( ( ℂfld evalSub1 ℚ ) ‘ ( 𝐾 ‘ 1 ) ) ‘ 𝑌 ) = 1 ) |
| 77 |
75 76
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( ℂfld evalSub1 ℚ ) ‘ ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ) ‘ 𝑌 ) + ( ( ( ℂfld evalSub1 ℚ ) ‘ ( 𝐾 ‘ 1 ) ) ‘ 𝑌 ) ) = ( ( - 3 · 𝑌 ) + 1 ) ) |
| 78 |
70 77
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ℂfld evalSub1 ℚ ) ‘ ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ‘ 𝑌 ) = ( ( - 3 · 𝑌 ) + 1 ) ) |
| 79 |
69 78
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( ℂfld evalSub1 ℚ ) ‘ ( 3 ↑ 𝑋 ) ) ‘ 𝑌 ) + ( ( ( ℂfld evalSub1 ℚ ) ‘ ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ‘ 𝑌 ) ) = ( ( 𝑌 ↑ 3 ) + ( ( - 3 · 𝑌 ) + 1 ) ) ) |
| 80 |
58 79
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ℂfld evalSub1 ℚ ) ‘ ( ( 3 ↑ 𝑋 ) + ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ) ‘ 𝑌 ) = ( ( 𝑌 ↑ 3 ) + ( ( - 3 · 𝑌 ) + 1 ) ) ) |
| 81 |
15 80
|
eqtrid |
⊢ ( 𝜑 → ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝐹 ) ‘ 𝑌 ) = ( ( 𝑌 ↑ 3 ) + ( ( - 3 · 𝑌 ) + 1 ) ) ) |