Metamath Proof Explorer


Theorem cos9thpiminplylem6

Description: Evaluation of the polynomial ( ( X ^ 3 ) + ( ( -u 3 x. X ) + 1 ) ) . (Contributed by Thierry Arnoux, 14-Nov-2025)

Ref Expression
Hypotheses cos9thpiminplylem3.1 𝑂 = ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) )
cos9thpiminplylem4.2 𝑍 = ( 𝑂𝑐 ( 1 / 3 ) )
cos9thpiminplylem5.3 𝐴 = ( 𝑍 + ( 1 / 𝑍 ) )
cos9thpiminply.q 𝑄 = ( ℂflds ℚ )
cos9thpiminply.4 + = ( +g𝑃 )
cos9thpiminply.5 · = ( .r𝑃 )
cos9thpiminply.6 = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
cos9thpiminply.p 𝑃 = ( Poly1𝑄 )
cos9thpiminply.k 𝐾 = ( algSc ‘ 𝑃 )
cos9thpiminply.x 𝑋 = ( var1𝑄 )
cos9thpiminply.d 𝐷 = ( deg1𝑄 )
cos9thpiminply.f 𝐹 = ( ( 3 𝑋 ) + ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) )
cos9thpiminplylem6.1 ( 𝜑𝑌 ∈ ℂ )
Assertion cos9thpiminplylem6 ( 𝜑 → ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝐹 ) ‘ 𝑌 ) = ( ( 𝑌 ↑ 3 ) + ( ( - 3 · 𝑌 ) + 1 ) ) )

Proof

Step Hyp Ref Expression
1 cos9thpiminplylem3.1 𝑂 = ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) )
2 cos9thpiminplylem4.2 𝑍 = ( 𝑂𝑐 ( 1 / 3 ) )
3 cos9thpiminplylem5.3 𝐴 = ( 𝑍 + ( 1 / 𝑍 ) )
4 cos9thpiminply.q 𝑄 = ( ℂflds ℚ )
5 cos9thpiminply.4 + = ( +g𝑃 )
6 cos9thpiminply.5 · = ( .r𝑃 )
7 cos9thpiminply.6 = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
8 cos9thpiminply.p 𝑃 = ( Poly1𝑄 )
9 cos9thpiminply.k 𝐾 = ( algSc ‘ 𝑃 )
10 cos9thpiminply.x 𝑋 = ( var1𝑄 )
11 cos9thpiminply.d 𝐷 = ( deg1𝑄 )
12 cos9thpiminply.f 𝐹 = ( ( 3 𝑋 ) + ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) )
13 cos9thpiminplylem6.1 ( 𝜑𝑌 ∈ ℂ )
14 12 fveq2i ( ( ℂfld evalSub1 ℚ ) ‘ 𝐹 ) = ( ( ℂfld evalSub1 ℚ ) ‘ ( ( 3 𝑋 ) + ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) )
15 14 fveq1i ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝐹 ) ‘ 𝑌 ) = ( ( ( ℂfld evalSub1 ℚ ) ‘ ( ( 3 𝑋 ) + ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ) ‘ 𝑌 )
16 eqid ( ℂfld evalSub1 ℚ ) = ( ℂfld evalSub1 ℚ )
17 cnfldbas ℂ = ( Base ‘ ℂfld )
18 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
19 cnfldadd + = ( +g ‘ ℂfld )
20 cncrng fld ∈ CRing
21 20 a1i ( 𝜑 → ℂfld ∈ CRing )
22 qsubdrg ( ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds ℚ ) ∈ DivRing )
23 22 simpli ℚ ∈ ( SubRing ‘ ℂfld )
24 23 a1i ( 𝜑 → ℚ ∈ ( SubRing ‘ ℂfld ) )
25 eqid ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 )
26 25 18 mgpbas ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ 𝑃 ) )
27 4 qdrng 𝑄 ∈ DivRing
28 27 a1i ( 𝜑𝑄 ∈ DivRing )
29 28 drngringd ( 𝜑𝑄 ∈ Ring )
30 8 ply1ring ( 𝑄 ∈ Ring → 𝑃 ∈ Ring )
31 29 30 syl ( 𝜑𝑃 ∈ Ring )
32 25 ringmgp ( 𝑃 ∈ Ring → ( mulGrp ‘ 𝑃 ) ∈ Mnd )
33 31 32 syl ( 𝜑 → ( mulGrp ‘ 𝑃 ) ∈ Mnd )
34 3nn0 3 ∈ ℕ0
35 34 a1i ( 𝜑 → 3 ∈ ℕ0 )
36 10 8 18 vr1cl ( 𝑄 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) )
37 29 36 syl ( 𝜑𝑋 ∈ ( Base ‘ 𝑃 ) )
38 26 7 33 35 37 mulgnn0cld ( 𝜑 → ( 3 𝑋 ) ∈ ( Base ‘ 𝑃 ) )
39 31 ringgrpd ( 𝜑𝑃 ∈ Grp )
40 8 ply1sca ( 𝑄 ∈ DivRing → 𝑄 = ( Scalar ‘ 𝑃 ) )
41 27 40 ax-mp 𝑄 = ( Scalar ‘ 𝑃 )
42 8 ply1lmod ( 𝑄 ∈ Ring → 𝑃 ∈ LMod )
43 29 42 syl ( 𝜑𝑃 ∈ LMod )
44 4 qrngbas ℚ = ( Base ‘ 𝑄 )
45 9 41 31 43 44 18 asclf ( 𝜑𝐾 : ℚ ⟶ ( Base ‘ 𝑃 ) )
46 35 nn0zd ( 𝜑 → 3 ∈ ℤ )
47 zq ( 3 ∈ ℤ → 3 ∈ ℚ )
48 46 47 syl ( 𝜑 → 3 ∈ ℚ )
49 qnegcl ( 3 ∈ ℚ → - 3 ∈ ℚ )
50 48 49 syl ( 𝜑 → - 3 ∈ ℚ )
51 45 50 ffvelcdmd ( 𝜑 → ( 𝐾 ‘ - 3 ) ∈ ( Base ‘ 𝑃 ) )
52 18 6 31 51 37 ringcld ( 𝜑 → ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ∈ ( Base ‘ 𝑃 ) )
53 1zzd ( 𝜑 → 1 ∈ ℤ )
54 zq ( 1 ∈ ℤ → 1 ∈ ℚ )
55 53 54 syl ( 𝜑 → 1 ∈ ℚ )
56 45 55 ffvelcdmd ( 𝜑 → ( 𝐾 ‘ 1 ) ∈ ( Base ‘ 𝑃 ) )
57 18 5 39 52 56 grpcld ( 𝜑 → ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ∈ ( Base ‘ 𝑃 ) )
58 16 17 8 4 18 5 19 21 24 38 57 13 evls1addd ( 𝜑 → ( ( ( ℂfld evalSub1 ℚ ) ‘ ( ( 3 𝑋 ) + ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ) ‘ 𝑌 ) = ( ( ( ( ℂfld evalSub1 ℚ ) ‘ ( 3 𝑋 ) ) ‘ 𝑌 ) + ( ( ( ℂfld evalSub1 ℚ ) ‘ ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ‘ 𝑌 ) ) )
59 eqid ( .g ‘ ( mulGrp ‘ ℂfld ) ) = ( .g ‘ ( mulGrp ‘ ℂfld ) )
60 16 17 8 4 18 21 24 7 59 35 37 13 evls1expd ( 𝜑 → ( ( ( ℂfld evalSub1 ℚ ) ‘ ( 3 𝑋 ) ) ‘ 𝑌 ) = ( 3 ( .g ‘ ( mulGrp ‘ ℂfld ) ) ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝑋 ) ‘ 𝑌 ) ) )
61 16 10 4 17 21 24 evls1var ( 𝜑 → ( ( ℂfld evalSub1 ℚ ) ‘ 𝑋 ) = ( I ↾ ℂ ) )
62 61 fveq1d ( 𝜑 → ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝑋 ) ‘ 𝑌 ) = ( ( I ↾ ℂ ) ‘ 𝑌 ) )
63 fvresi ( 𝑌 ∈ ℂ → ( ( I ↾ ℂ ) ‘ 𝑌 ) = 𝑌 )
64 13 63 syl ( 𝜑 → ( ( I ↾ ℂ ) ‘ 𝑌 ) = 𝑌 )
65 62 64 eqtrd ( 𝜑 → ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝑋 ) ‘ 𝑌 ) = 𝑌 )
66 65 oveq2d ( 𝜑 → ( 3 ( .g ‘ ( mulGrp ‘ ℂfld ) ) ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝑋 ) ‘ 𝑌 ) ) = ( 3 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑌 ) )
67 cnfldexp ( ( 𝑌 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 3 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑌 ) = ( 𝑌 ↑ 3 ) )
68 13 34 67 sylancl ( 𝜑 → ( 3 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑌 ) = ( 𝑌 ↑ 3 ) )
69 60 66 68 3eqtrd ( 𝜑 → ( ( ( ℂfld evalSub1 ℚ ) ‘ ( 3 𝑋 ) ) ‘ 𝑌 ) = ( 𝑌 ↑ 3 ) )
70 16 17 8 4 18 5 19 21 24 52 56 13 evls1addd ( 𝜑 → ( ( ( ℂfld evalSub1 ℚ ) ‘ ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ‘ 𝑌 ) = ( ( ( ( ℂfld evalSub1 ℚ ) ‘ ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ) ‘ 𝑌 ) + ( ( ( ℂfld evalSub1 ℚ ) ‘ ( 𝐾 ‘ 1 ) ) ‘ 𝑌 ) ) )
71 cnfldmul · = ( .r ‘ ℂfld )
72 16 17 8 4 18 6 71 21 24 51 37 13 evls1muld ( 𝜑 → ( ( ( ℂfld evalSub1 ℚ ) ‘ ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ) ‘ 𝑌 ) = ( ( ( ( ℂfld evalSub1 ℚ ) ‘ ( 𝐾 ‘ - 3 ) ) ‘ 𝑌 ) · ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝑋 ) ‘ 𝑌 ) ) )
73 16 8 4 17 9 21 24 50 13 evls1scafv ( 𝜑 → ( ( ( ℂfld evalSub1 ℚ ) ‘ ( 𝐾 ‘ - 3 ) ) ‘ 𝑌 ) = - 3 )
74 73 65 oveq12d ( 𝜑 → ( ( ( ( ℂfld evalSub1 ℚ ) ‘ ( 𝐾 ‘ - 3 ) ) ‘ 𝑌 ) · ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝑋 ) ‘ 𝑌 ) ) = ( - 3 · 𝑌 ) )
75 72 74 eqtrd ( 𝜑 → ( ( ( ℂfld evalSub1 ℚ ) ‘ ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ) ‘ 𝑌 ) = ( - 3 · 𝑌 ) )
76 16 8 4 17 9 21 24 55 13 evls1scafv ( 𝜑 → ( ( ( ℂfld evalSub1 ℚ ) ‘ ( 𝐾 ‘ 1 ) ) ‘ 𝑌 ) = 1 )
77 75 76 oveq12d ( 𝜑 → ( ( ( ( ℂfld evalSub1 ℚ ) ‘ ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ) ‘ 𝑌 ) + ( ( ( ℂfld evalSub1 ℚ ) ‘ ( 𝐾 ‘ 1 ) ) ‘ 𝑌 ) ) = ( ( - 3 · 𝑌 ) + 1 ) )
78 70 77 eqtrd ( 𝜑 → ( ( ( ℂfld evalSub1 ℚ ) ‘ ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ‘ 𝑌 ) = ( ( - 3 · 𝑌 ) + 1 ) )
79 69 78 oveq12d ( 𝜑 → ( ( ( ( ℂfld evalSub1 ℚ ) ‘ ( 3 𝑋 ) ) ‘ 𝑌 ) + ( ( ( ℂfld evalSub1 ℚ ) ‘ ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ‘ 𝑌 ) ) = ( ( 𝑌 ↑ 3 ) + ( ( - 3 · 𝑌 ) + 1 ) ) )
80 58 79 eqtrd ( 𝜑 → ( ( ( ℂfld evalSub1 ℚ ) ‘ ( ( 3 𝑋 ) + ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ) ‘ 𝑌 ) = ( ( 𝑌 ↑ 3 ) + ( ( - 3 · 𝑌 ) + 1 ) ) )
81 15 80 eqtrid ( 𝜑 → ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝐹 ) ‘ 𝑌 ) = ( ( 𝑌 ↑ 3 ) + ( ( - 3 · 𝑌 ) + 1 ) ) )