| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cos9thpiminplylem3.1 |
|- O = ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) |
| 2 |
|
cos9thpiminplylem4.2 |
|- Z = ( O ^c ( 1 / 3 ) ) |
| 3 |
|
cos9thpiminplylem5.3 |
|- A = ( Z + ( 1 / Z ) ) |
| 4 |
|
cos9thpiminply.q |
|- Q = ( CCfld |`s QQ ) |
| 5 |
|
cos9thpiminply.4 |
|- .+ = ( +g ` P ) |
| 6 |
|
cos9thpiminply.5 |
|- .x. = ( .r ` P ) |
| 7 |
|
cos9thpiminply.6 |
|- .^ = ( .g ` ( mulGrp ` P ) ) |
| 8 |
|
cos9thpiminply.p |
|- P = ( Poly1 ` Q ) |
| 9 |
|
cos9thpiminply.k |
|- K = ( algSc ` P ) |
| 10 |
|
cos9thpiminply.x |
|- X = ( var1 ` Q ) |
| 11 |
|
cos9thpiminply.d |
|- D = ( deg1 ` Q ) |
| 12 |
|
cos9thpiminply.f |
|- F = ( ( 3 .^ X ) .+ ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) |
| 13 |
|
cos9thpiminplylem6.1 |
|- ( ph -> Y e. CC ) |
| 14 |
12
|
fveq2i |
|- ( ( CCfld evalSub1 QQ ) ` F ) = ( ( CCfld evalSub1 QQ ) ` ( ( 3 .^ X ) .+ ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) ) |
| 15 |
14
|
fveq1i |
|- ( ( ( CCfld evalSub1 QQ ) ` F ) ` Y ) = ( ( ( CCfld evalSub1 QQ ) ` ( ( 3 .^ X ) .+ ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) ) ` Y ) |
| 16 |
|
eqid |
|- ( CCfld evalSub1 QQ ) = ( CCfld evalSub1 QQ ) |
| 17 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 18 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 19 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
| 20 |
|
cncrng |
|- CCfld e. CRing |
| 21 |
20
|
a1i |
|- ( ph -> CCfld e. CRing ) |
| 22 |
|
qsubdrg |
|- ( QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing ) |
| 23 |
22
|
simpli |
|- QQ e. ( SubRing ` CCfld ) |
| 24 |
23
|
a1i |
|- ( ph -> QQ e. ( SubRing ` CCfld ) ) |
| 25 |
|
eqid |
|- ( mulGrp ` P ) = ( mulGrp ` P ) |
| 26 |
25 18
|
mgpbas |
|- ( Base ` P ) = ( Base ` ( mulGrp ` P ) ) |
| 27 |
4
|
qdrng |
|- Q e. DivRing |
| 28 |
27
|
a1i |
|- ( ph -> Q e. DivRing ) |
| 29 |
28
|
drngringd |
|- ( ph -> Q e. Ring ) |
| 30 |
8
|
ply1ring |
|- ( Q e. Ring -> P e. Ring ) |
| 31 |
29 30
|
syl |
|- ( ph -> P e. Ring ) |
| 32 |
25
|
ringmgp |
|- ( P e. Ring -> ( mulGrp ` P ) e. Mnd ) |
| 33 |
31 32
|
syl |
|- ( ph -> ( mulGrp ` P ) e. Mnd ) |
| 34 |
|
3nn0 |
|- 3 e. NN0 |
| 35 |
34
|
a1i |
|- ( ph -> 3 e. NN0 ) |
| 36 |
10 8 18
|
vr1cl |
|- ( Q e. Ring -> X e. ( Base ` P ) ) |
| 37 |
29 36
|
syl |
|- ( ph -> X e. ( Base ` P ) ) |
| 38 |
26 7 33 35 37
|
mulgnn0cld |
|- ( ph -> ( 3 .^ X ) e. ( Base ` P ) ) |
| 39 |
31
|
ringgrpd |
|- ( ph -> P e. Grp ) |
| 40 |
8
|
ply1sca |
|- ( Q e. DivRing -> Q = ( Scalar ` P ) ) |
| 41 |
27 40
|
ax-mp |
|- Q = ( Scalar ` P ) |
| 42 |
8
|
ply1lmod |
|- ( Q e. Ring -> P e. LMod ) |
| 43 |
29 42
|
syl |
|- ( ph -> P e. LMod ) |
| 44 |
4
|
qrngbas |
|- QQ = ( Base ` Q ) |
| 45 |
9 41 31 43 44 18
|
asclf |
|- ( ph -> K : QQ --> ( Base ` P ) ) |
| 46 |
35
|
nn0zd |
|- ( ph -> 3 e. ZZ ) |
| 47 |
|
zq |
|- ( 3 e. ZZ -> 3 e. QQ ) |
| 48 |
46 47
|
syl |
|- ( ph -> 3 e. QQ ) |
| 49 |
|
qnegcl |
|- ( 3 e. QQ -> -u 3 e. QQ ) |
| 50 |
48 49
|
syl |
|- ( ph -> -u 3 e. QQ ) |
| 51 |
45 50
|
ffvelcdmd |
|- ( ph -> ( K ` -u 3 ) e. ( Base ` P ) ) |
| 52 |
18 6 31 51 37
|
ringcld |
|- ( ph -> ( ( K ` -u 3 ) .x. X ) e. ( Base ` P ) ) |
| 53 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 54 |
|
zq |
|- ( 1 e. ZZ -> 1 e. QQ ) |
| 55 |
53 54
|
syl |
|- ( ph -> 1 e. QQ ) |
| 56 |
45 55
|
ffvelcdmd |
|- ( ph -> ( K ` 1 ) e. ( Base ` P ) ) |
| 57 |
18 5 39 52 56
|
grpcld |
|- ( ph -> ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) e. ( Base ` P ) ) |
| 58 |
16 17 8 4 18 5 19 21 24 38 57 13
|
evls1addd |
|- ( ph -> ( ( ( CCfld evalSub1 QQ ) ` ( ( 3 .^ X ) .+ ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) ) ` Y ) = ( ( ( ( CCfld evalSub1 QQ ) ` ( 3 .^ X ) ) ` Y ) + ( ( ( CCfld evalSub1 QQ ) ` ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) ` Y ) ) ) |
| 59 |
|
eqid |
|- ( .g ` ( mulGrp ` CCfld ) ) = ( .g ` ( mulGrp ` CCfld ) ) |
| 60 |
16 17 8 4 18 21 24 7 59 35 37 13
|
evls1expd |
|- ( ph -> ( ( ( CCfld evalSub1 QQ ) ` ( 3 .^ X ) ) ` Y ) = ( 3 ( .g ` ( mulGrp ` CCfld ) ) ( ( ( CCfld evalSub1 QQ ) ` X ) ` Y ) ) ) |
| 61 |
16 10 4 17 21 24
|
evls1var |
|- ( ph -> ( ( CCfld evalSub1 QQ ) ` X ) = ( _I |` CC ) ) |
| 62 |
61
|
fveq1d |
|- ( ph -> ( ( ( CCfld evalSub1 QQ ) ` X ) ` Y ) = ( ( _I |` CC ) ` Y ) ) |
| 63 |
|
fvresi |
|- ( Y e. CC -> ( ( _I |` CC ) ` Y ) = Y ) |
| 64 |
13 63
|
syl |
|- ( ph -> ( ( _I |` CC ) ` Y ) = Y ) |
| 65 |
62 64
|
eqtrd |
|- ( ph -> ( ( ( CCfld evalSub1 QQ ) ` X ) ` Y ) = Y ) |
| 66 |
65
|
oveq2d |
|- ( ph -> ( 3 ( .g ` ( mulGrp ` CCfld ) ) ( ( ( CCfld evalSub1 QQ ) ` X ) ` Y ) ) = ( 3 ( .g ` ( mulGrp ` CCfld ) ) Y ) ) |
| 67 |
|
cnfldexp |
|- ( ( Y e. CC /\ 3 e. NN0 ) -> ( 3 ( .g ` ( mulGrp ` CCfld ) ) Y ) = ( Y ^ 3 ) ) |
| 68 |
13 34 67
|
sylancl |
|- ( ph -> ( 3 ( .g ` ( mulGrp ` CCfld ) ) Y ) = ( Y ^ 3 ) ) |
| 69 |
60 66 68
|
3eqtrd |
|- ( ph -> ( ( ( CCfld evalSub1 QQ ) ` ( 3 .^ X ) ) ` Y ) = ( Y ^ 3 ) ) |
| 70 |
16 17 8 4 18 5 19 21 24 52 56 13
|
evls1addd |
|- ( ph -> ( ( ( CCfld evalSub1 QQ ) ` ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) ` Y ) = ( ( ( ( CCfld evalSub1 QQ ) ` ( ( K ` -u 3 ) .x. X ) ) ` Y ) + ( ( ( CCfld evalSub1 QQ ) ` ( K ` 1 ) ) ` Y ) ) ) |
| 71 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
| 72 |
16 17 8 4 18 6 71 21 24 51 37 13
|
evls1muld |
|- ( ph -> ( ( ( CCfld evalSub1 QQ ) ` ( ( K ` -u 3 ) .x. X ) ) ` Y ) = ( ( ( ( CCfld evalSub1 QQ ) ` ( K ` -u 3 ) ) ` Y ) x. ( ( ( CCfld evalSub1 QQ ) ` X ) ` Y ) ) ) |
| 73 |
16 8 4 17 9 21 24 50 13
|
evls1scafv |
|- ( ph -> ( ( ( CCfld evalSub1 QQ ) ` ( K ` -u 3 ) ) ` Y ) = -u 3 ) |
| 74 |
73 65
|
oveq12d |
|- ( ph -> ( ( ( ( CCfld evalSub1 QQ ) ` ( K ` -u 3 ) ) ` Y ) x. ( ( ( CCfld evalSub1 QQ ) ` X ) ` Y ) ) = ( -u 3 x. Y ) ) |
| 75 |
72 74
|
eqtrd |
|- ( ph -> ( ( ( CCfld evalSub1 QQ ) ` ( ( K ` -u 3 ) .x. X ) ) ` Y ) = ( -u 3 x. Y ) ) |
| 76 |
16 8 4 17 9 21 24 55 13
|
evls1scafv |
|- ( ph -> ( ( ( CCfld evalSub1 QQ ) ` ( K ` 1 ) ) ` Y ) = 1 ) |
| 77 |
75 76
|
oveq12d |
|- ( ph -> ( ( ( ( CCfld evalSub1 QQ ) ` ( ( K ` -u 3 ) .x. X ) ) ` Y ) + ( ( ( CCfld evalSub1 QQ ) ` ( K ` 1 ) ) ` Y ) ) = ( ( -u 3 x. Y ) + 1 ) ) |
| 78 |
70 77
|
eqtrd |
|- ( ph -> ( ( ( CCfld evalSub1 QQ ) ` ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) ` Y ) = ( ( -u 3 x. Y ) + 1 ) ) |
| 79 |
69 78
|
oveq12d |
|- ( ph -> ( ( ( ( CCfld evalSub1 QQ ) ` ( 3 .^ X ) ) ` Y ) + ( ( ( CCfld evalSub1 QQ ) ` ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) ` Y ) ) = ( ( Y ^ 3 ) + ( ( -u 3 x. Y ) + 1 ) ) ) |
| 80 |
58 79
|
eqtrd |
|- ( ph -> ( ( ( CCfld evalSub1 QQ ) ` ( ( 3 .^ X ) .+ ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) ) ` Y ) = ( ( Y ^ 3 ) + ( ( -u 3 x. Y ) + 1 ) ) ) |
| 81 |
15 80
|
eqtrid |
|- ( ph -> ( ( ( CCfld evalSub1 QQ ) ` F ) ` Y ) = ( ( Y ^ 3 ) + ( ( -u 3 x. Y ) + 1 ) ) ) |