Metamath Proof Explorer


Theorem cos9thpiminplylem6

Description: Evaluation of the polynomial ( ( X ^ 3 ) + ( ( -u 3 x. X ) + 1 ) ) . (Contributed by Thierry Arnoux, 14-Nov-2025)

Ref Expression
Hypotheses cos9thpiminplylem3.1
|- O = ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) )
cos9thpiminplylem4.2
|- Z = ( O ^c ( 1 / 3 ) )
cos9thpiminplylem5.3
|- A = ( Z + ( 1 / Z ) )
cos9thpiminply.q
|- Q = ( CCfld |`s QQ )
cos9thpiminply.4
|- .+ = ( +g ` P )
cos9thpiminply.5
|- .x. = ( .r ` P )
cos9thpiminply.6
|- .^ = ( .g ` ( mulGrp ` P ) )
cos9thpiminply.p
|- P = ( Poly1 ` Q )
cos9thpiminply.k
|- K = ( algSc ` P )
cos9thpiminply.x
|- X = ( var1 ` Q )
cos9thpiminply.d
|- D = ( deg1 ` Q )
cos9thpiminply.f
|- F = ( ( 3 .^ X ) .+ ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) )
cos9thpiminplylem6.1
|- ( ph -> Y e. CC )
Assertion cos9thpiminplylem6
|- ( ph -> ( ( ( CCfld evalSub1 QQ ) ` F ) ` Y ) = ( ( Y ^ 3 ) + ( ( -u 3 x. Y ) + 1 ) ) )

Proof

Step Hyp Ref Expression
1 cos9thpiminplylem3.1
 |-  O = ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) )
2 cos9thpiminplylem4.2
 |-  Z = ( O ^c ( 1 / 3 ) )
3 cos9thpiminplylem5.3
 |-  A = ( Z + ( 1 / Z ) )
4 cos9thpiminply.q
 |-  Q = ( CCfld |`s QQ )
5 cos9thpiminply.4
 |-  .+ = ( +g ` P )
6 cos9thpiminply.5
 |-  .x. = ( .r ` P )
7 cos9thpiminply.6
 |-  .^ = ( .g ` ( mulGrp ` P ) )
8 cos9thpiminply.p
 |-  P = ( Poly1 ` Q )
9 cos9thpiminply.k
 |-  K = ( algSc ` P )
10 cos9thpiminply.x
 |-  X = ( var1 ` Q )
11 cos9thpiminply.d
 |-  D = ( deg1 ` Q )
12 cos9thpiminply.f
 |-  F = ( ( 3 .^ X ) .+ ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) )
13 cos9thpiminplylem6.1
 |-  ( ph -> Y e. CC )
14 12 fveq2i
 |-  ( ( CCfld evalSub1 QQ ) ` F ) = ( ( CCfld evalSub1 QQ ) ` ( ( 3 .^ X ) .+ ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) )
15 14 fveq1i
 |-  ( ( ( CCfld evalSub1 QQ ) ` F ) ` Y ) = ( ( ( CCfld evalSub1 QQ ) ` ( ( 3 .^ X ) .+ ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) ) ` Y )
16 eqid
 |-  ( CCfld evalSub1 QQ ) = ( CCfld evalSub1 QQ )
17 cnfldbas
 |-  CC = ( Base ` CCfld )
18 eqid
 |-  ( Base ` P ) = ( Base ` P )
19 cnfldadd
 |-  + = ( +g ` CCfld )
20 cncrng
 |-  CCfld e. CRing
21 20 a1i
 |-  ( ph -> CCfld e. CRing )
22 qsubdrg
 |-  ( QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing )
23 22 simpli
 |-  QQ e. ( SubRing ` CCfld )
24 23 a1i
 |-  ( ph -> QQ e. ( SubRing ` CCfld ) )
25 eqid
 |-  ( mulGrp ` P ) = ( mulGrp ` P )
26 25 18 mgpbas
 |-  ( Base ` P ) = ( Base ` ( mulGrp ` P ) )
27 4 qdrng
 |-  Q e. DivRing
28 27 a1i
 |-  ( ph -> Q e. DivRing )
29 28 drngringd
 |-  ( ph -> Q e. Ring )
30 8 ply1ring
 |-  ( Q e. Ring -> P e. Ring )
31 29 30 syl
 |-  ( ph -> P e. Ring )
32 25 ringmgp
 |-  ( P e. Ring -> ( mulGrp ` P ) e. Mnd )
33 31 32 syl
 |-  ( ph -> ( mulGrp ` P ) e. Mnd )
34 3nn0
 |-  3 e. NN0
35 34 a1i
 |-  ( ph -> 3 e. NN0 )
36 10 8 18 vr1cl
 |-  ( Q e. Ring -> X e. ( Base ` P ) )
37 29 36 syl
 |-  ( ph -> X e. ( Base ` P ) )
38 26 7 33 35 37 mulgnn0cld
 |-  ( ph -> ( 3 .^ X ) e. ( Base ` P ) )
39 31 ringgrpd
 |-  ( ph -> P e. Grp )
40 8 ply1sca
 |-  ( Q e. DivRing -> Q = ( Scalar ` P ) )
41 27 40 ax-mp
 |-  Q = ( Scalar ` P )
42 8 ply1lmod
 |-  ( Q e. Ring -> P e. LMod )
43 29 42 syl
 |-  ( ph -> P e. LMod )
44 4 qrngbas
 |-  QQ = ( Base ` Q )
45 9 41 31 43 44 18 asclf
 |-  ( ph -> K : QQ --> ( Base ` P ) )
46 35 nn0zd
 |-  ( ph -> 3 e. ZZ )
47 zq
 |-  ( 3 e. ZZ -> 3 e. QQ )
48 46 47 syl
 |-  ( ph -> 3 e. QQ )
49 qnegcl
 |-  ( 3 e. QQ -> -u 3 e. QQ )
50 48 49 syl
 |-  ( ph -> -u 3 e. QQ )
51 45 50 ffvelcdmd
 |-  ( ph -> ( K ` -u 3 ) e. ( Base ` P ) )
52 18 6 31 51 37 ringcld
 |-  ( ph -> ( ( K ` -u 3 ) .x. X ) e. ( Base ` P ) )
53 1zzd
 |-  ( ph -> 1 e. ZZ )
54 zq
 |-  ( 1 e. ZZ -> 1 e. QQ )
55 53 54 syl
 |-  ( ph -> 1 e. QQ )
56 45 55 ffvelcdmd
 |-  ( ph -> ( K ` 1 ) e. ( Base ` P ) )
57 18 5 39 52 56 grpcld
 |-  ( ph -> ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) e. ( Base ` P ) )
58 16 17 8 4 18 5 19 21 24 38 57 13 evls1addd
 |-  ( ph -> ( ( ( CCfld evalSub1 QQ ) ` ( ( 3 .^ X ) .+ ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) ) ` Y ) = ( ( ( ( CCfld evalSub1 QQ ) ` ( 3 .^ X ) ) ` Y ) + ( ( ( CCfld evalSub1 QQ ) ` ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) ` Y ) ) )
59 eqid
 |-  ( .g ` ( mulGrp ` CCfld ) ) = ( .g ` ( mulGrp ` CCfld ) )
60 16 17 8 4 18 21 24 7 59 35 37 13 evls1expd
 |-  ( ph -> ( ( ( CCfld evalSub1 QQ ) ` ( 3 .^ X ) ) ` Y ) = ( 3 ( .g ` ( mulGrp ` CCfld ) ) ( ( ( CCfld evalSub1 QQ ) ` X ) ` Y ) ) )
61 16 10 4 17 21 24 evls1var
 |-  ( ph -> ( ( CCfld evalSub1 QQ ) ` X ) = ( _I |` CC ) )
62 61 fveq1d
 |-  ( ph -> ( ( ( CCfld evalSub1 QQ ) ` X ) ` Y ) = ( ( _I |` CC ) ` Y ) )
63 fvresi
 |-  ( Y e. CC -> ( ( _I |` CC ) ` Y ) = Y )
64 13 63 syl
 |-  ( ph -> ( ( _I |` CC ) ` Y ) = Y )
65 62 64 eqtrd
 |-  ( ph -> ( ( ( CCfld evalSub1 QQ ) ` X ) ` Y ) = Y )
66 65 oveq2d
 |-  ( ph -> ( 3 ( .g ` ( mulGrp ` CCfld ) ) ( ( ( CCfld evalSub1 QQ ) ` X ) ` Y ) ) = ( 3 ( .g ` ( mulGrp ` CCfld ) ) Y ) )
67 cnfldexp
 |-  ( ( Y e. CC /\ 3 e. NN0 ) -> ( 3 ( .g ` ( mulGrp ` CCfld ) ) Y ) = ( Y ^ 3 ) )
68 13 34 67 sylancl
 |-  ( ph -> ( 3 ( .g ` ( mulGrp ` CCfld ) ) Y ) = ( Y ^ 3 ) )
69 60 66 68 3eqtrd
 |-  ( ph -> ( ( ( CCfld evalSub1 QQ ) ` ( 3 .^ X ) ) ` Y ) = ( Y ^ 3 ) )
70 16 17 8 4 18 5 19 21 24 52 56 13 evls1addd
 |-  ( ph -> ( ( ( CCfld evalSub1 QQ ) ` ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) ` Y ) = ( ( ( ( CCfld evalSub1 QQ ) ` ( ( K ` -u 3 ) .x. X ) ) ` Y ) + ( ( ( CCfld evalSub1 QQ ) ` ( K ` 1 ) ) ` Y ) ) )
71 cnfldmul
 |-  x. = ( .r ` CCfld )
72 16 17 8 4 18 6 71 21 24 51 37 13 evls1muld
 |-  ( ph -> ( ( ( CCfld evalSub1 QQ ) ` ( ( K ` -u 3 ) .x. X ) ) ` Y ) = ( ( ( ( CCfld evalSub1 QQ ) ` ( K ` -u 3 ) ) ` Y ) x. ( ( ( CCfld evalSub1 QQ ) ` X ) ` Y ) ) )
73 16 8 4 17 9 21 24 50 13 evls1scafv
 |-  ( ph -> ( ( ( CCfld evalSub1 QQ ) ` ( K ` -u 3 ) ) ` Y ) = -u 3 )
74 73 65 oveq12d
 |-  ( ph -> ( ( ( ( CCfld evalSub1 QQ ) ` ( K ` -u 3 ) ) ` Y ) x. ( ( ( CCfld evalSub1 QQ ) ` X ) ` Y ) ) = ( -u 3 x. Y ) )
75 72 74 eqtrd
 |-  ( ph -> ( ( ( CCfld evalSub1 QQ ) ` ( ( K ` -u 3 ) .x. X ) ) ` Y ) = ( -u 3 x. Y ) )
76 16 8 4 17 9 21 24 55 13 evls1scafv
 |-  ( ph -> ( ( ( CCfld evalSub1 QQ ) ` ( K ` 1 ) ) ` Y ) = 1 )
77 75 76 oveq12d
 |-  ( ph -> ( ( ( ( CCfld evalSub1 QQ ) ` ( ( K ` -u 3 ) .x. X ) ) ` Y ) + ( ( ( CCfld evalSub1 QQ ) ` ( K ` 1 ) ) ` Y ) ) = ( ( -u 3 x. Y ) + 1 ) )
78 70 77 eqtrd
 |-  ( ph -> ( ( ( CCfld evalSub1 QQ ) ` ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) ` Y ) = ( ( -u 3 x. Y ) + 1 ) )
79 69 78 oveq12d
 |-  ( ph -> ( ( ( ( CCfld evalSub1 QQ ) ` ( 3 .^ X ) ) ` Y ) + ( ( ( CCfld evalSub1 QQ ) ` ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) ` Y ) ) = ( ( Y ^ 3 ) + ( ( -u 3 x. Y ) + 1 ) ) )
80 58 79 eqtrd
 |-  ( ph -> ( ( ( CCfld evalSub1 QQ ) ` ( ( 3 .^ X ) .+ ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) ) ` Y ) = ( ( Y ^ 3 ) + ( ( -u 3 x. Y ) + 1 ) ) )
81 15 80 eqtrid
 |-  ( ph -> ( ( ( CCfld evalSub1 QQ ) ` F ) ` Y ) = ( ( Y ^ 3 ) + ( ( -u 3 x. Y ) + 1 ) ) )