| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cos9thpiminplylem3.1 |
|- O = ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) |
| 2 |
|
cos9thpiminplylem4.2 |
|- Z = ( O ^c ( 1 / 3 ) ) |
| 3 |
|
cos9thpiminplylem5.3 |
|- A = ( Z + ( 1 / Z ) ) |
| 4 |
|
cos9thpiminply.q |
|- Q = ( CCfld |`s QQ ) |
| 5 |
|
cos9thpiminply.4 |
|- .+ = ( +g ` P ) |
| 6 |
|
cos9thpiminply.5 |
|- .x. = ( .r ` P ) |
| 7 |
|
cos9thpiminply.6 |
|- .^ = ( .g ` ( mulGrp ` P ) ) |
| 8 |
|
cos9thpiminply.p |
|- P = ( Poly1 ` Q ) |
| 9 |
|
cos9thpiminply.k |
|- K = ( algSc ` P ) |
| 10 |
|
cos9thpiminply.x |
|- X = ( var1 ` Q ) |
| 11 |
|
cos9thpiminply.d |
|- D = ( deg1 ` Q ) |
| 12 |
|
cos9thpiminply.f |
|- F = ( ( 3 .^ X ) .+ ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) |
| 13 |
|
cos9thpiminply.m |
|- M = ( CCfld minPoly QQ ) |
| 14 |
|
eqid |
|- ( CCfld evalSub1 QQ ) = ( CCfld evalSub1 QQ ) |
| 15 |
4
|
fveq2i |
|- ( Poly1 ` Q ) = ( Poly1 ` ( CCfld |`s QQ ) ) |
| 16 |
8 15
|
eqtri |
|- P = ( Poly1 ` ( CCfld |`s QQ ) ) |
| 17 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 18 |
|
cnfldfld |
|- CCfld e. Field |
| 19 |
18
|
a1i |
|- ( T. -> CCfld e. Field ) |
| 20 |
|
cndrng |
|- CCfld e. DivRing |
| 21 |
|
qsubdrg |
|- ( QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing ) |
| 22 |
21
|
simpli |
|- QQ e. ( SubRing ` CCfld ) |
| 23 |
21
|
simpri |
|- ( CCfld |`s QQ ) e. DivRing |
| 24 |
|
issdrg |
|- ( QQ e. ( SubDRing ` CCfld ) <-> ( CCfld e. DivRing /\ QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing ) ) |
| 25 |
20 22 23 24
|
mpbir3an |
|- QQ e. ( SubDRing ` CCfld ) |
| 26 |
25
|
a1i |
|- ( T. -> QQ e. ( SubDRing ` CCfld ) ) |
| 27 |
|
ax-icn |
|- _i e. CC |
| 28 |
27
|
a1i |
|- ( T. -> _i e. CC ) |
| 29 |
|
2cnd |
|- ( T. -> 2 e. CC ) |
| 30 |
|
picn |
|- _pi e. CC |
| 31 |
30
|
a1i |
|- ( T. -> _pi e. CC ) |
| 32 |
29 31
|
mulcld |
|- ( T. -> ( 2 x. _pi ) e. CC ) |
| 33 |
28 32
|
mulcld |
|- ( T. -> ( _i x. ( 2 x. _pi ) ) e. CC ) |
| 34 |
|
3cn |
|- 3 e. CC |
| 35 |
34
|
a1i |
|- ( T. -> 3 e. CC ) |
| 36 |
|
3ne0 |
|- 3 =/= 0 |
| 37 |
36
|
a1i |
|- ( T. -> 3 =/= 0 ) |
| 38 |
33 35 37
|
divcld |
|- ( T. -> ( ( _i x. ( 2 x. _pi ) ) / 3 ) e. CC ) |
| 39 |
38
|
efcld |
|- ( T. -> ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) e. CC ) |
| 40 |
1 39
|
eqeltrid |
|- ( T. -> O e. CC ) |
| 41 |
35 37
|
reccld |
|- ( T. -> ( 1 / 3 ) e. CC ) |
| 42 |
40 41
|
cxpcld |
|- ( T. -> ( O ^c ( 1 / 3 ) ) e. CC ) |
| 43 |
2 42
|
eqeltrid |
|- ( T. -> Z e. CC ) |
| 44 |
2
|
a1i |
|- ( T. -> Z = ( O ^c ( 1 / 3 ) ) ) |
| 45 |
1
|
a1i |
|- ( T. -> O = ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) ) |
| 46 |
38
|
efne0d |
|- ( T. -> ( exp ` ( ( _i x. ( 2 x. _pi ) ) / 3 ) ) =/= 0 ) |
| 47 |
45 46
|
eqnetrd |
|- ( T. -> O =/= 0 ) |
| 48 |
40 47 41
|
cxpne0d |
|- ( T. -> ( O ^c ( 1 / 3 ) ) =/= 0 ) |
| 49 |
44 48
|
eqnetrd |
|- ( T. -> Z =/= 0 ) |
| 50 |
43 49
|
reccld |
|- ( T. -> ( 1 / Z ) e. CC ) |
| 51 |
43 50
|
addcld |
|- ( T. -> ( Z + ( 1 / Z ) ) e. CC ) |
| 52 |
3 51
|
eqeltrid |
|- ( T. -> A e. CC ) |
| 53 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
| 54 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
| 55 |
1 2 3 4 5 6 7 8 9 10 11 12 52
|
cos9thpiminplylem6 |
|- ( T. -> ( ( ( CCfld evalSub1 QQ ) ` F ) ` A ) = ( ( A ^ 3 ) + ( ( -u 3 x. A ) + 1 ) ) ) |
| 56 |
1 2 3
|
cos9thpiminplylem5 |
|- ( ( A ^ 3 ) + ( ( -u 3 x. A ) + 1 ) ) = 0 |
| 57 |
55 56
|
eqtrdi |
|- ( T. -> ( ( ( CCfld evalSub1 QQ ) ` F ) ` A ) = 0 ) |
| 58 |
4
|
qrng0 |
|- 0 = ( 0g ` Q ) |
| 59 |
|
eqid |
|- ( eval1 ` Q ) = ( eval1 ` Q ) |
| 60 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 61 |
4
|
qfld |
|- Q e. Field |
| 62 |
61
|
a1i |
|- ( T. -> Q e. Field ) |
| 63 |
4
|
qdrng |
|- Q e. DivRing |
| 64 |
63
|
a1i |
|- ( T. -> Q e. DivRing ) |
| 65 |
64
|
drngringd |
|- ( T. -> Q e. Ring ) |
| 66 |
8
|
ply1ring |
|- ( Q e. Ring -> P e. Ring ) |
| 67 |
65 66
|
syl |
|- ( T. -> P e. Ring ) |
| 68 |
67
|
ringgrpd |
|- ( T. -> P e. Grp ) |
| 69 |
|
eqid |
|- ( mulGrp ` P ) = ( mulGrp ` P ) |
| 70 |
69 60
|
mgpbas |
|- ( Base ` P ) = ( Base ` ( mulGrp ` P ) ) |
| 71 |
69
|
ringmgp |
|- ( P e. Ring -> ( mulGrp ` P ) e. Mnd ) |
| 72 |
67 71
|
syl |
|- ( T. -> ( mulGrp ` P ) e. Mnd ) |
| 73 |
|
3nn0 |
|- 3 e. NN0 |
| 74 |
73
|
a1i |
|- ( T. -> 3 e. NN0 ) |
| 75 |
10 8 60
|
vr1cl |
|- ( Q e. Ring -> X e. ( Base ` P ) ) |
| 76 |
65 75
|
syl |
|- ( T. -> X e. ( Base ` P ) ) |
| 77 |
70 7 72 74 76
|
mulgnn0cld |
|- ( T. -> ( 3 .^ X ) e. ( Base ` P ) ) |
| 78 |
8
|
ply1sca |
|- ( Q e. DivRing -> Q = ( Scalar ` P ) ) |
| 79 |
63 78
|
ax-mp |
|- Q = ( Scalar ` P ) |
| 80 |
8
|
ply1lmod |
|- ( Q e. Ring -> P e. LMod ) |
| 81 |
65 80
|
syl |
|- ( T. -> P e. LMod ) |
| 82 |
4
|
qrngbas |
|- QQ = ( Base ` Q ) |
| 83 |
9 79 67 81 82 60
|
asclf |
|- ( T. -> K : QQ --> ( Base ` P ) ) |
| 84 |
74
|
nn0zd |
|- ( T. -> 3 e. ZZ ) |
| 85 |
|
zq |
|- ( 3 e. ZZ -> 3 e. QQ ) |
| 86 |
|
qnegcl |
|- ( 3 e. QQ -> -u 3 e. QQ ) |
| 87 |
84 85 86
|
3syl |
|- ( T. -> -u 3 e. QQ ) |
| 88 |
83 87
|
ffvelcdmd |
|- ( T. -> ( K ` -u 3 ) e. ( Base ` P ) ) |
| 89 |
60 6 67 88 76
|
ringcld |
|- ( T. -> ( ( K ` -u 3 ) .x. X ) e. ( Base ` P ) ) |
| 90 |
|
1zzd |
|- ( T. -> 1 e. ZZ ) |
| 91 |
|
zq |
|- ( 1 e. ZZ -> 1 e. QQ ) |
| 92 |
90 91
|
syl |
|- ( T. -> 1 e. QQ ) |
| 93 |
83 92
|
ffvelcdmd |
|- ( T. -> ( K ` 1 ) e. ( Base ` P ) ) |
| 94 |
60 5 68 89 93
|
grpcld |
|- ( T. -> ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) e. ( Base ` P ) ) |
| 95 |
60 5 68 77 94
|
grpcld |
|- ( T. -> ( ( 3 .^ X ) .+ ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) e. ( Base ` P ) ) |
| 96 |
12 95
|
eqeltrid |
|- ( T. -> F e. ( Base ` P ) ) |
| 97 |
62
|
fldcrngd |
|- ( T. -> Q e. CRing ) |
| 98 |
59 8 60 97 82 96
|
evl1fvf |
|- ( T. -> ( ( eval1 ` Q ) ` F ) : QQ --> QQ ) |
| 99 |
98
|
ffnd |
|- ( T. -> ( ( eval1 ` Q ) ` F ) Fn QQ ) |
| 100 |
|
fniniseg2 |
|- ( ( ( eval1 ` Q ) ` F ) Fn QQ -> ( `' ( ( eval1 ` Q ) ` F ) " { 0 } ) = { x e. QQ | ( ( ( eval1 ` Q ) ` F ) ` x ) = 0 } ) |
| 101 |
99 100
|
syl |
|- ( T. -> ( `' ( ( eval1 ` Q ) ` F ) " { 0 } ) = { x e. QQ | ( ( ( eval1 ` Q ) ` F ) ` x ) = 0 } ) |
| 102 |
59 82
|
evl1fval1 |
|- ( eval1 ` Q ) = ( Q evalSub1 QQ ) |
| 103 |
102
|
a1i |
|- ( x e. QQ -> ( eval1 ` Q ) = ( Q evalSub1 QQ ) ) |
| 104 |
103
|
fveq1d |
|- ( x e. QQ -> ( ( eval1 ` Q ) ` F ) = ( ( Q evalSub1 QQ ) ` F ) ) |
| 105 |
104
|
fveq1d |
|- ( x e. QQ -> ( ( ( eval1 ` Q ) ` F ) ` x ) = ( ( ( Q evalSub1 QQ ) ` F ) ` x ) ) |
| 106 |
|
eqid |
|- ( Q evalSub1 QQ ) = ( Q evalSub1 QQ ) |
| 107 |
|
cncrng |
|- CCfld e. CRing |
| 108 |
107
|
a1i |
|- ( x e. QQ -> CCfld e. CRing ) |
| 109 |
22
|
a1i |
|- ( x e. QQ -> QQ e. ( SubRing ` CCfld ) ) |
| 110 |
97
|
mptru |
|- Q e. CRing |
| 111 |
110
|
a1i |
|- ( x e. QQ -> Q e. CRing ) |
| 112 |
111
|
crngringd |
|- ( x e. QQ -> Q e. Ring ) |
| 113 |
82
|
subrgid |
|- ( Q e. Ring -> QQ e. ( SubRing ` Q ) ) |
| 114 |
112 113
|
syl |
|- ( x e. QQ -> QQ e. ( SubRing ` Q ) ) |
| 115 |
96
|
mptru |
|- F e. ( Base ` P ) |
| 116 |
115
|
a1i |
|- ( x e. QQ -> F e. ( Base ` P ) ) |
| 117 |
4 14 106 8 4 60 108 109 114 116
|
ressply1evls1 |
|- ( x e. QQ -> ( ( Q evalSub1 QQ ) ` F ) = ( ( ( CCfld evalSub1 QQ ) ` F ) |` QQ ) ) |
| 118 |
117
|
fveq1d |
|- ( x e. QQ -> ( ( ( Q evalSub1 QQ ) ` F ) ` x ) = ( ( ( ( CCfld evalSub1 QQ ) ` F ) |` QQ ) ` x ) ) |
| 119 |
|
fvres |
|- ( x e. QQ -> ( ( ( ( CCfld evalSub1 QQ ) ` F ) |` QQ ) ` x ) = ( ( ( CCfld evalSub1 QQ ) ` F ) ` x ) ) |
| 120 |
118 119
|
eqtr2d |
|- ( x e. QQ -> ( ( ( CCfld evalSub1 QQ ) ` F ) ` x ) = ( ( ( Q evalSub1 QQ ) ` F ) ` x ) ) |
| 121 |
|
qcn |
|- ( x e. QQ -> x e. CC ) |
| 122 |
1 2 3 4 5 6 7 8 9 10 11 12 121
|
cos9thpiminplylem6 |
|- ( x e. QQ -> ( ( ( CCfld evalSub1 QQ ) ` F ) ` x ) = ( ( x ^ 3 ) + ( ( -u 3 x. x ) + 1 ) ) ) |
| 123 |
105 120 122
|
3eqtr2d |
|- ( x e. QQ -> ( ( ( eval1 ` Q ) ` F ) ` x ) = ( ( x ^ 3 ) + ( ( -u 3 x. x ) + 1 ) ) ) |
| 124 |
|
id |
|- ( x e. QQ -> x e. QQ ) |
| 125 |
124
|
cos9thpiminplylem2 |
|- ( x e. QQ -> ( ( x ^ 3 ) + ( ( -u 3 x. x ) + 1 ) ) =/= 0 ) |
| 126 |
123 125
|
eqnetrd |
|- ( x e. QQ -> ( ( ( eval1 ` Q ) ` F ) ` x ) =/= 0 ) |
| 127 |
126
|
neneqd |
|- ( x e. QQ -> -. ( ( ( eval1 ` Q ) ` F ) ` x ) = 0 ) |
| 128 |
127
|
rgen |
|- A. x e. QQ -. ( ( ( eval1 ` Q ) ` F ) ` x ) = 0 |
| 129 |
128
|
a1i |
|- ( T. -> A. x e. QQ -. ( ( ( eval1 ` Q ) ` F ) ` x ) = 0 ) |
| 130 |
|
rabeq0 |
|- ( { x e. QQ | ( ( ( eval1 ` Q ) ` F ) ` x ) = 0 } = (/) <-> A. x e. QQ -. ( ( ( eval1 ` Q ) ` F ) ` x ) = 0 ) |
| 131 |
129 130
|
sylibr |
|- ( T. -> { x e. QQ | ( ( ( eval1 ` Q ) ` F ) ` x ) = 0 } = (/) ) |
| 132 |
101 131
|
eqtrd |
|- ( T. -> ( `' ( ( eval1 ` Q ) ` F ) " { 0 } ) = (/) ) |
| 133 |
12
|
a1i |
|- ( T. -> F = ( ( 3 .^ X ) .+ ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) ) |
| 134 |
133
|
fveq2d |
|- ( T. -> ( D ` F ) = ( D ` ( ( 3 .^ X ) .+ ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) ) ) |
| 135 |
|
1lt3 |
|- 1 < 3 |
| 136 |
135
|
a1i |
|- ( T. -> 1 < 3 ) |
| 137 |
|
0lt1 |
|- 0 < 1 |
| 138 |
137
|
a1i |
|- ( T. -> 0 < 1 ) |
| 139 |
138
|
gt0ne0d |
|- ( T. -> 1 =/= 0 ) |
| 140 |
11 8 82 9 58
|
deg1scl |
|- ( ( Q e. Ring /\ 1 e. QQ /\ 1 =/= 0 ) -> ( D ` ( K ` 1 ) ) = 0 ) |
| 141 |
65 92 139 140
|
syl3anc |
|- ( T. -> ( D ` ( K ` 1 ) ) = 0 ) |
| 142 |
|
drngdomn |
|- ( Q e. DivRing -> Q e. Domn ) |
| 143 |
63 142
|
mp1i |
|- ( T. -> Q e. Domn ) |
| 144 |
35 37
|
negne0d |
|- ( T. -> -u 3 =/= 0 ) |
| 145 |
8 9 58 54 82
|
ply1scln0 |
|- ( ( Q e. Ring /\ -u 3 e. QQ /\ -u 3 =/= 0 ) -> ( K ` -u 3 ) =/= ( 0g ` P ) ) |
| 146 |
65 87 144 145
|
syl3anc |
|- ( T. -> ( K ` -u 3 ) =/= ( 0g ` P ) ) |
| 147 |
107
|
a1i |
|- ( T. -> CCfld e. CRing ) |
| 148 |
|
drngnzr |
|- ( CCfld e. DivRing -> CCfld e. NzRing ) |
| 149 |
20 148
|
mp1i |
|- ( T. -> CCfld e. NzRing ) |
| 150 |
22
|
a1i |
|- ( T. -> QQ e. ( SubRing ` CCfld ) ) |
| 151 |
10 54 4 8 147 149 150
|
vr1nz |
|- ( T. -> X =/= ( 0g ` P ) ) |
| 152 |
11 8 60 6 54 143 88 146 76 151
|
deg1mul |
|- ( T. -> ( D ` ( ( K ` -u 3 ) .x. X ) ) = ( ( D ` ( K ` -u 3 ) ) + ( D ` X ) ) ) |
| 153 |
11 8 82 9 58
|
deg1scl |
|- ( ( Q e. Ring /\ -u 3 e. QQ /\ -u 3 =/= 0 ) -> ( D ` ( K ` -u 3 ) ) = 0 ) |
| 154 |
65 87 144 153
|
syl3anc |
|- ( T. -> ( D ` ( K ` -u 3 ) ) = 0 ) |
| 155 |
|
drngnzr |
|- ( Q e. DivRing -> Q e. NzRing ) |
| 156 |
63 155
|
mp1i |
|- ( T. -> Q e. NzRing ) |
| 157 |
11 8 10 156
|
deg1vr |
|- ( T. -> ( D ` X ) = 1 ) |
| 158 |
154 157
|
oveq12d |
|- ( T. -> ( ( D ` ( K ` -u 3 ) ) + ( D ` X ) ) = ( 0 + 1 ) ) |
| 159 |
|
1cnd |
|- ( T. -> 1 e. CC ) |
| 160 |
159
|
addlidd |
|- ( T. -> ( 0 + 1 ) = 1 ) |
| 161 |
152 158 160
|
3eqtrd |
|- ( T. -> ( D ` ( ( K ` -u 3 ) .x. X ) ) = 1 ) |
| 162 |
138 141 161
|
3brtr4d |
|- ( T. -> ( D ` ( K ` 1 ) ) < ( D ` ( ( K ` -u 3 ) .x. X ) ) ) |
| 163 |
8 11 65 60 5 89 93 162
|
deg1add |
|- ( T. -> ( D ` ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) = ( D ` ( ( K ` -u 3 ) .x. X ) ) ) |
| 164 |
163 161
|
eqtrd |
|- ( T. -> ( D ` ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) = 1 ) |
| 165 |
11 8 10 69 7
|
deg1pw |
|- ( ( Q e. NzRing /\ 3 e. NN0 ) -> ( D ` ( 3 .^ X ) ) = 3 ) |
| 166 |
156 74 165
|
syl2anc |
|- ( T. -> ( D ` ( 3 .^ X ) ) = 3 ) |
| 167 |
136 164 166
|
3brtr4d |
|- ( T. -> ( D ` ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) < ( D ` ( 3 .^ X ) ) ) |
| 168 |
8 11 65 60 5 77 94 167
|
deg1add |
|- ( T. -> ( D ` ( ( 3 .^ X ) .+ ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) ) = ( D ` ( 3 .^ X ) ) ) |
| 169 |
134 168 166
|
3eqtrd |
|- ( T. -> ( D ` F ) = 3 ) |
| 170 |
58 59 11 8 60 62 96 132 169
|
ply1dg3rt0irred |
|- ( T. -> F e. ( Irred ` P ) ) |
| 171 |
|
eqid |
|- ( Irred ` P ) = ( Irred ` P ) |
| 172 |
171 54
|
irredn0 |
|- ( ( P e. Ring /\ F e. ( Irred ` P ) ) -> F =/= ( 0g ` P ) ) |
| 173 |
67 170 172
|
syl2anc |
|- ( T. -> F =/= ( 0g ` P ) ) |
| 174 |
169
|
fveq2d |
|- ( T. -> ( ( coe1 ` F ) ` ( D ` F ) ) = ( ( coe1 ` F ) ` 3 ) ) |
| 175 |
133
|
fveq2d |
|- ( T. -> ( coe1 ` F ) = ( coe1 ` ( ( 3 .^ X ) .+ ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) ) ) |
| 176 |
175
|
fveq1d |
|- ( T. -> ( ( coe1 ` F ) ` 3 ) = ( ( coe1 ` ( ( 3 .^ X ) .+ ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) ) ` 3 ) ) |
| 177 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
| 178 |
4 177
|
ressplusg |
|- ( QQ e. ( SubRing ` CCfld ) -> + = ( +g ` Q ) ) |
| 179 |
22 178
|
ax-mp |
|- + = ( +g ` Q ) |
| 180 |
8 60 5 179
|
coe1addfv |
|- ( ( ( Q e. Ring /\ ( 3 .^ X ) e. ( Base ` P ) /\ ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) e. ( Base ` P ) ) /\ 3 e. NN0 ) -> ( ( coe1 ` ( ( 3 .^ X ) .+ ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) ) ` 3 ) = ( ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) + ( ( coe1 ` ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) ` 3 ) ) ) |
| 181 |
65 77 94 74 180
|
syl31anc |
|- ( T. -> ( ( coe1 ` ( ( 3 .^ X ) .+ ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) ) ` 3 ) = ( ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) + ( ( coe1 ` ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) ` 3 ) ) ) |
| 182 |
|
iftrue |
|- ( i = 3 -> if ( i = 3 , 1 , 0 ) = 1 ) |
| 183 |
4
|
qrng1 |
|- 1 = ( 1r ` Q ) |
| 184 |
8 10 7 65 74 58 183
|
coe1mon |
|- ( T. -> ( coe1 ` ( 3 .^ X ) ) = ( i e. NN0 |-> if ( i = 3 , 1 , 0 ) ) ) |
| 185 |
182 184 74 159
|
fvmptd4 |
|- ( T. -> ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) = 1 ) |
| 186 |
8 60 5 179
|
coe1addfv |
|- ( ( ( Q e. Ring /\ ( ( K ` -u 3 ) .x. X ) e. ( Base ` P ) /\ ( K ` 1 ) e. ( Base ` P ) ) /\ 3 e. NN0 ) -> ( ( coe1 ` ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) ` 3 ) = ( ( ( coe1 ` ( ( K ` -u 3 ) .x. X ) ) ` 3 ) + ( ( coe1 ` ( K ` 1 ) ) ` 3 ) ) ) |
| 187 |
65 89 93 74 186
|
syl31anc |
|- ( T. -> ( ( coe1 ` ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) ` 3 ) = ( ( ( coe1 ` ( ( K ` -u 3 ) .x. X ) ) ` 3 ) + ( ( coe1 ` ( K ` 1 ) ) ` 3 ) ) ) |
| 188 |
8
|
ply1assa |
|- ( Q e. CRing -> P e. AssAlg ) |
| 189 |
97 188
|
syl |
|- ( T. -> P e. AssAlg ) |
| 190 |
|
eqid |
|- ( .s ` P ) = ( .s ` P ) |
| 191 |
9 79 82 60 6 190
|
asclmul1 |
|- ( ( P e. AssAlg /\ -u 3 e. QQ /\ X e. ( Base ` P ) ) -> ( ( K ` -u 3 ) .x. X ) = ( -u 3 ( .s ` P ) X ) ) |
| 192 |
189 87 76 191
|
syl3anc |
|- ( T. -> ( ( K ` -u 3 ) .x. X ) = ( -u 3 ( .s ` P ) X ) ) |
| 193 |
70 7
|
mulg1 |
|- ( X e. ( Base ` P ) -> ( 1 .^ X ) = X ) |
| 194 |
76 193
|
syl |
|- ( T. -> ( 1 .^ X ) = X ) |
| 195 |
194
|
oveq2d |
|- ( T. -> ( -u 3 ( .s ` P ) ( 1 .^ X ) ) = ( -u 3 ( .s ` P ) X ) ) |
| 196 |
192 195
|
eqtr4d |
|- ( T. -> ( ( K ` -u 3 ) .x. X ) = ( -u 3 ( .s ` P ) ( 1 .^ X ) ) ) |
| 197 |
196
|
fveq2d |
|- ( T. -> ( coe1 ` ( ( K ` -u 3 ) .x. X ) ) = ( coe1 ` ( -u 3 ( .s ` P ) ( 1 .^ X ) ) ) ) |
| 198 |
197
|
fveq1d |
|- ( T. -> ( ( coe1 ` ( ( K ` -u 3 ) .x. X ) ) ` 3 ) = ( ( coe1 ` ( -u 3 ( .s ` P ) ( 1 .^ X ) ) ) ` 3 ) ) |
| 199 |
|
1nn0 |
|- 1 e. NN0 |
| 200 |
199
|
a1i |
|- ( T. -> 1 e. NN0 ) |
| 201 |
|
1red |
|- ( T. -> 1 e. RR ) |
| 202 |
201 136
|
ltned |
|- ( T. -> 1 =/= 3 ) |
| 203 |
58 82 8 10 190 69 7 65 87 200 74 202
|
coe1tmfv2 |
|- ( T. -> ( ( coe1 ` ( -u 3 ( .s ` P ) ( 1 .^ X ) ) ) ` 3 ) = 0 ) |
| 204 |
198 203
|
eqtrd |
|- ( T. -> ( ( coe1 ` ( ( K ` -u 3 ) .x. X ) ) ` 3 ) = 0 ) |
| 205 |
8 9 82 58
|
coe1scl |
|- ( ( Q e. Ring /\ 1 e. QQ ) -> ( coe1 ` ( K ` 1 ) ) = ( i e. NN0 |-> if ( i = 0 , 1 , 0 ) ) ) |
| 206 |
65 92 205
|
syl2anc |
|- ( T. -> ( coe1 ` ( K ` 1 ) ) = ( i e. NN0 |-> if ( i = 0 , 1 , 0 ) ) ) |
| 207 |
|
simpr |
|- ( ( T. /\ i = 3 ) -> i = 3 ) |
| 208 |
36
|
a1i |
|- ( ( T. /\ i = 3 ) -> 3 =/= 0 ) |
| 209 |
207 208
|
eqnetrd |
|- ( ( T. /\ i = 3 ) -> i =/= 0 ) |
| 210 |
209
|
neneqd |
|- ( ( T. /\ i = 3 ) -> -. i = 0 ) |
| 211 |
210
|
iffalsed |
|- ( ( T. /\ i = 3 ) -> if ( i = 0 , 1 , 0 ) = 0 ) |
| 212 |
|
0zd |
|- ( T. -> 0 e. ZZ ) |
| 213 |
206 211 74 212
|
fvmptd |
|- ( T. -> ( ( coe1 ` ( K ` 1 ) ) ` 3 ) = 0 ) |
| 214 |
204 213
|
oveq12d |
|- ( T. -> ( ( ( coe1 ` ( ( K ` -u 3 ) .x. X ) ) ` 3 ) + ( ( coe1 ` ( K ` 1 ) ) ` 3 ) ) = ( 0 + 0 ) ) |
| 215 |
|
00id |
|- ( 0 + 0 ) = 0 |
| 216 |
215
|
a1i |
|- ( T. -> ( 0 + 0 ) = 0 ) |
| 217 |
187 214 216
|
3eqtrd |
|- ( T. -> ( ( coe1 ` ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) ` 3 ) = 0 ) |
| 218 |
185 217
|
oveq12d |
|- ( T. -> ( ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) + ( ( coe1 ` ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) ` 3 ) ) = ( 1 + 0 ) ) |
| 219 |
159
|
addridd |
|- ( T. -> ( 1 + 0 ) = 1 ) |
| 220 |
218 219
|
eqtrd |
|- ( T. -> ( ( ( coe1 ` ( 3 .^ X ) ) ` 3 ) + ( ( coe1 ` ( ( ( K ` -u 3 ) .x. X ) .+ ( K ` 1 ) ) ) ` 3 ) ) = 1 ) |
| 221 |
176 181 220
|
3eqtrd |
|- ( T. -> ( ( coe1 ` F ) ` 3 ) = 1 ) |
| 222 |
174 221
|
eqtrd |
|- ( T. -> ( ( coe1 ` F ) ` ( D ` F ) ) = 1 ) |
| 223 |
4
|
fveq2i |
|- ( Monic1p ` Q ) = ( Monic1p ` ( CCfld |`s QQ ) ) |
| 224 |
223
|
eqcomi |
|- ( Monic1p ` ( CCfld |`s QQ ) ) = ( Monic1p ` Q ) |
| 225 |
8 60 54 11 224 183
|
ismon1p |
|- ( F e. ( Monic1p ` ( CCfld |`s QQ ) ) <-> ( F e. ( Base ` P ) /\ F =/= ( 0g ` P ) /\ ( ( coe1 ` F ) ` ( D ` F ) ) = 1 ) ) |
| 226 |
96 173 222 225
|
syl3anbrc |
|- ( T. -> F e. ( Monic1p ` ( CCfld |`s QQ ) ) ) |
| 227 |
14 16 17 19 26 52 53 13 54 57 170 226
|
irredminply |
|- ( T. -> F = ( M ` A ) ) |
| 228 |
227 169
|
jca |
|- ( T. -> ( F = ( M ` A ) /\ ( D ` F ) = 3 ) ) |
| 229 |
228
|
mptru |
|- ( F = ( M ` A ) /\ ( D ` F ) = 3 ) |