Metamath Proof Explorer


Theorem cos9thpiminply

Description: The polynomial ( ( X ^ 3 ) + ( ( -u 3 x. X ) + 1 ) ) is the minimal polynomial for A over QQ , and its degree is 3 . (Contributed by Thierry Arnoux, 14-Nov-2025)

Ref Expression
Hypotheses cos9thpiminplylem3.1 𝑂 = ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) )
cos9thpiminplylem4.2 𝑍 = ( 𝑂𝑐 ( 1 / 3 ) )
cos9thpiminplylem5.3 𝐴 = ( 𝑍 + ( 1 / 𝑍 ) )
cos9thpiminply.q 𝑄 = ( ℂflds ℚ )
cos9thpiminply.4 + = ( +g𝑃 )
cos9thpiminply.5 · = ( .r𝑃 )
cos9thpiminply.6 = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
cos9thpiminply.p 𝑃 = ( Poly1𝑄 )
cos9thpiminply.k 𝐾 = ( algSc ‘ 𝑃 )
cos9thpiminply.x 𝑋 = ( var1𝑄 )
cos9thpiminply.d 𝐷 = ( deg1𝑄 )
cos9thpiminply.f 𝐹 = ( ( 3 𝑋 ) + ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) )
cos9thpiminply.m 𝑀 = ( ℂfld minPoly ℚ )
Assertion cos9thpiminply ( 𝐹 = ( 𝑀𝐴 ) ∧ ( 𝐷𝐹 ) = 3 )

Proof

Step Hyp Ref Expression
1 cos9thpiminplylem3.1 𝑂 = ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) )
2 cos9thpiminplylem4.2 𝑍 = ( 𝑂𝑐 ( 1 / 3 ) )
3 cos9thpiminplylem5.3 𝐴 = ( 𝑍 + ( 1 / 𝑍 ) )
4 cos9thpiminply.q 𝑄 = ( ℂflds ℚ )
5 cos9thpiminply.4 + = ( +g𝑃 )
6 cos9thpiminply.5 · = ( .r𝑃 )
7 cos9thpiminply.6 = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
8 cos9thpiminply.p 𝑃 = ( Poly1𝑄 )
9 cos9thpiminply.k 𝐾 = ( algSc ‘ 𝑃 )
10 cos9thpiminply.x 𝑋 = ( var1𝑄 )
11 cos9thpiminply.d 𝐷 = ( deg1𝑄 )
12 cos9thpiminply.f 𝐹 = ( ( 3 𝑋 ) + ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) )
13 cos9thpiminply.m 𝑀 = ( ℂfld minPoly ℚ )
14 eqid ( ℂfld evalSub1 ℚ ) = ( ℂfld evalSub1 ℚ )
15 4 fveq2i ( Poly1𝑄 ) = ( Poly1 ‘ ( ℂflds ℚ ) )
16 8 15 eqtri 𝑃 = ( Poly1 ‘ ( ℂflds ℚ ) )
17 cnfldbas ℂ = ( Base ‘ ℂfld )
18 cnfldfld fld ∈ Field
19 18 a1i ( ⊤ → ℂfld ∈ Field )
20 cndrng fld ∈ DivRing
21 qsubdrg ( ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds ℚ ) ∈ DivRing )
22 21 simpli ℚ ∈ ( SubRing ‘ ℂfld )
23 21 simpri ( ℂflds ℚ ) ∈ DivRing
24 issdrg ( ℚ ∈ ( SubDRing ‘ ℂfld ) ↔ ( ℂfld ∈ DivRing ∧ ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds ℚ ) ∈ DivRing ) )
25 20 22 23 24 mpbir3an ℚ ∈ ( SubDRing ‘ ℂfld )
26 25 a1i ( ⊤ → ℚ ∈ ( SubDRing ‘ ℂfld ) )
27 ax-icn i ∈ ℂ
28 27 a1i ( ⊤ → i ∈ ℂ )
29 2cnd ( ⊤ → 2 ∈ ℂ )
30 picn π ∈ ℂ
31 30 a1i ( ⊤ → π ∈ ℂ )
32 29 31 mulcld ( ⊤ → ( 2 · π ) ∈ ℂ )
33 28 32 mulcld ( ⊤ → ( i · ( 2 · π ) ) ∈ ℂ )
34 3cn 3 ∈ ℂ
35 34 a1i ( ⊤ → 3 ∈ ℂ )
36 3ne0 3 ≠ 0
37 36 a1i ( ⊤ → 3 ≠ 0 )
38 33 35 37 divcld ( ⊤ → ( ( i · ( 2 · π ) ) / 3 ) ∈ ℂ )
39 38 efcld ( ⊤ → ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ∈ ℂ )
40 1 39 eqeltrid ( ⊤ → 𝑂 ∈ ℂ )
41 35 37 reccld ( ⊤ → ( 1 / 3 ) ∈ ℂ )
42 40 41 cxpcld ( ⊤ → ( 𝑂𝑐 ( 1 / 3 ) ) ∈ ℂ )
43 2 42 eqeltrid ( ⊤ → 𝑍 ∈ ℂ )
44 2 a1i ( ⊤ → 𝑍 = ( 𝑂𝑐 ( 1 / 3 ) ) )
45 1 a1i ( ⊤ → 𝑂 = ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) )
46 38 efne0d ( ⊤ → ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ≠ 0 )
47 45 46 eqnetrd ( ⊤ → 𝑂 ≠ 0 )
48 40 47 41 cxpne0d ( ⊤ → ( 𝑂𝑐 ( 1 / 3 ) ) ≠ 0 )
49 44 48 eqnetrd ( ⊤ → 𝑍 ≠ 0 )
50 43 49 reccld ( ⊤ → ( 1 / 𝑍 ) ∈ ℂ )
51 43 50 addcld ( ⊤ → ( 𝑍 + ( 1 / 𝑍 ) ) ∈ ℂ )
52 3 51 eqeltrid ( ⊤ → 𝐴 ∈ ℂ )
53 cnfld0 0 = ( 0g ‘ ℂfld )
54 eqid ( 0g𝑃 ) = ( 0g𝑃 )
55 1 2 3 4 5 6 7 8 9 10 11 12 52 cos9thpiminplylem6 ( ⊤ → ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝐹 ) ‘ 𝐴 ) = ( ( 𝐴 ↑ 3 ) + ( ( - 3 · 𝐴 ) + 1 ) ) )
56 1 2 3 cos9thpiminplylem5 ( ( 𝐴 ↑ 3 ) + ( ( - 3 · 𝐴 ) + 1 ) ) = 0
57 55 56 eqtrdi ( ⊤ → ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝐹 ) ‘ 𝐴 ) = 0 )
58 4 qrng0 0 = ( 0g𝑄 )
59 eqid ( eval1𝑄 ) = ( eval1𝑄 )
60 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
61 4 qfld 𝑄 ∈ Field
62 61 a1i ( ⊤ → 𝑄 ∈ Field )
63 4 qdrng 𝑄 ∈ DivRing
64 63 a1i ( ⊤ → 𝑄 ∈ DivRing )
65 64 drngringd ( ⊤ → 𝑄 ∈ Ring )
66 8 ply1ring ( 𝑄 ∈ Ring → 𝑃 ∈ Ring )
67 65 66 syl ( ⊤ → 𝑃 ∈ Ring )
68 67 ringgrpd ( ⊤ → 𝑃 ∈ Grp )
69 eqid ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 )
70 69 60 mgpbas ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ 𝑃 ) )
71 69 ringmgp ( 𝑃 ∈ Ring → ( mulGrp ‘ 𝑃 ) ∈ Mnd )
72 67 71 syl ( ⊤ → ( mulGrp ‘ 𝑃 ) ∈ Mnd )
73 3nn0 3 ∈ ℕ0
74 73 a1i ( ⊤ → 3 ∈ ℕ0 )
75 10 8 60 vr1cl ( 𝑄 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) )
76 65 75 syl ( ⊤ → 𝑋 ∈ ( Base ‘ 𝑃 ) )
77 70 7 72 74 76 mulgnn0cld ( ⊤ → ( 3 𝑋 ) ∈ ( Base ‘ 𝑃 ) )
78 8 ply1sca ( 𝑄 ∈ DivRing → 𝑄 = ( Scalar ‘ 𝑃 ) )
79 63 78 ax-mp 𝑄 = ( Scalar ‘ 𝑃 )
80 8 ply1lmod ( 𝑄 ∈ Ring → 𝑃 ∈ LMod )
81 65 80 syl ( ⊤ → 𝑃 ∈ LMod )
82 4 qrngbas ℚ = ( Base ‘ 𝑄 )
83 9 79 67 81 82 60 asclf ( ⊤ → 𝐾 : ℚ ⟶ ( Base ‘ 𝑃 ) )
84 74 nn0zd ( ⊤ → 3 ∈ ℤ )
85 zq ( 3 ∈ ℤ → 3 ∈ ℚ )
86 qnegcl ( 3 ∈ ℚ → - 3 ∈ ℚ )
87 84 85 86 3syl ( ⊤ → - 3 ∈ ℚ )
88 83 87 ffvelcdmd ( ⊤ → ( 𝐾 ‘ - 3 ) ∈ ( Base ‘ 𝑃 ) )
89 60 6 67 88 76 ringcld ( ⊤ → ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ∈ ( Base ‘ 𝑃 ) )
90 1zzd ( ⊤ → 1 ∈ ℤ )
91 zq ( 1 ∈ ℤ → 1 ∈ ℚ )
92 90 91 syl ( ⊤ → 1 ∈ ℚ )
93 83 92 ffvelcdmd ( ⊤ → ( 𝐾 ‘ 1 ) ∈ ( Base ‘ 𝑃 ) )
94 60 5 68 89 93 grpcld ( ⊤ → ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ∈ ( Base ‘ 𝑃 ) )
95 60 5 68 77 94 grpcld ( ⊤ → ( ( 3 𝑋 ) + ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ∈ ( Base ‘ 𝑃 ) )
96 12 95 eqeltrid ( ⊤ → 𝐹 ∈ ( Base ‘ 𝑃 ) )
97 62 fldcrngd ( ⊤ → 𝑄 ∈ CRing )
98 59 8 60 97 82 96 evl1fvf ( ⊤ → ( ( eval1𝑄 ) ‘ 𝐹 ) : ℚ ⟶ ℚ )
99 98 ffnd ( ⊤ → ( ( eval1𝑄 ) ‘ 𝐹 ) Fn ℚ )
100 fniniseg2 ( ( ( eval1𝑄 ) ‘ 𝐹 ) Fn ℚ → ( ( ( eval1𝑄 ) ‘ 𝐹 ) “ { 0 } ) = { 𝑥 ∈ ℚ ∣ ( ( ( eval1𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) = 0 } )
101 99 100 syl ( ⊤ → ( ( ( eval1𝑄 ) ‘ 𝐹 ) “ { 0 } ) = { 𝑥 ∈ ℚ ∣ ( ( ( eval1𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) = 0 } )
102 59 82 evl1fval1 ( eval1𝑄 ) = ( 𝑄 evalSub1 ℚ )
103 102 a1i ( 𝑥 ∈ ℚ → ( eval1𝑄 ) = ( 𝑄 evalSub1 ℚ ) )
104 103 fveq1d ( 𝑥 ∈ ℚ → ( ( eval1𝑄 ) ‘ 𝐹 ) = ( ( 𝑄 evalSub1 ℚ ) ‘ 𝐹 ) )
105 104 fveq1d ( 𝑥 ∈ ℚ → ( ( ( eval1𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝑄 evalSub1 ℚ ) ‘ 𝐹 ) ‘ 𝑥 ) )
106 eqid ( 𝑄 evalSub1 ℚ ) = ( 𝑄 evalSub1 ℚ )
107 cncrng fld ∈ CRing
108 107 a1i ( 𝑥 ∈ ℚ → ℂfld ∈ CRing )
109 22 a1i ( 𝑥 ∈ ℚ → ℚ ∈ ( SubRing ‘ ℂfld ) )
110 97 mptru 𝑄 ∈ CRing
111 110 a1i ( 𝑥 ∈ ℚ → 𝑄 ∈ CRing )
112 111 crngringd ( 𝑥 ∈ ℚ → 𝑄 ∈ Ring )
113 82 subrgid ( 𝑄 ∈ Ring → ℚ ∈ ( SubRing ‘ 𝑄 ) )
114 112 113 syl ( 𝑥 ∈ ℚ → ℚ ∈ ( SubRing ‘ 𝑄 ) )
115 96 mptru 𝐹 ∈ ( Base ‘ 𝑃 )
116 115 a1i ( 𝑥 ∈ ℚ → 𝐹 ∈ ( Base ‘ 𝑃 ) )
117 4 14 106 8 4 60 108 109 114 116 ressply1evls1 ( 𝑥 ∈ ℚ → ( ( 𝑄 evalSub1 ℚ ) ‘ 𝐹 ) = ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝐹 ) ↾ ℚ ) )
118 117 fveq1d ( 𝑥 ∈ ℚ → ( ( ( 𝑄 evalSub1 ℚ ) ‘ 𝐹 ) ‘ 𝑥 ) = ( ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝐹 ) ↾ ℚ ) ‘ 𝑥 ) )
119 fvres ( 𝑥 ∈ ℚ → ( ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝐹 ) ↾ ℚ ) ‘ 𝑥 ) = ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝐹 ) ‘ 𝑥 ) )
120 118 119 eqtr2d ( 𝑥 ∈ ℚ → ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝑄 evalSub1 ℚ ) ‘ 𝐹 ) ‘ 𝑥 ) )
121 qcn ( 𝑥 ∈ ℚ → 𝑥 ∈ ℂ )
122 1 2 3 4 5 6 7 8 9 10 11 12 121 cos9thpiminplylem6 ( 𝑥 ∈ ℚ → ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝑥 ↑ 3 ) + ( ( - 3 · 𝑥 ) + 1 ) ) )
123 105 120 122 3eqtr2d ( 𝑥 ∈ ℚ → ( ( ( eval1𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝑥 ↑ 3 ) + ( ( - 3 · 𝑥 ) + 1 ) ) )
124 id ( 𝑥 ∈ ℚ → 𝑥 ∈ ℚ )
125 124 cos9thpiminplylem2 ( 𝑥 ∈ ℚ → ( ( 𝑥 ↑ 3 ) + ( ( - 3 · 𝑥 ) + 1 ) ) ≠ 0 )
126 123 125 eqnetrd ( 𝑥 ∈ ℚ → ( ( ( eval1𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) ≠ 0 )
127 126 neneqd ( 𝑥 ∈ ℚ → ¬ ( ( ( eval1𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) = 0 )
128 127 rgen 𝑥 ∈ ℚ ¬ ( ( ( eval1𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) = 0
129 128 a1i ( ⊤ → ∀ 𝑥 ∈ ℚ ¬ ( ( ( eval1𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) = 0 )
130 rabeq0 ( { 𝑥 ∈ ℚ ∣ ( ( ( eval1𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) = 0 } = ∅ ↔ ∀ 𝑥 ∈ ℚ ¬ ( ( ( eval1𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) = 0 )
131 129 130 sylibr ( ⊤ → { 𝑥 ∈ ℚ ∣ ( ( ( eval1𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) = 0 } = ∅ )
132 101 131 eqtrd ( ⊤ → ( ( ( eval1𝑄 ) ‘ 𝐹 ) “ { 0 } ) = ∅ )
133 12 a1i ( ⊤ → 𝐹 = ( ( 3 𝑋 ) + ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) )
134 133 fveq2d ( ⊤ → ( 𝐷𝐹 ) = ( 𝐷 ‘ ( ( 3 𝑋 ) + ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ) )
135 1lt3 1 < 3
136 135 a1i ( ⊤ → 1 < 3 )
137 0lt1 0 < 1
138 137 a1i ( ⊤ → 0 < 1 )
139 138 gt0ne0d ( ⊤ → 1 ≠ 0 )
140 11 8 82 9 58 deg1scl ( ( 𝑄 ∈ Ring ∧ 1 ∈ ℚ ∧ 1 ≠ 0 ) → ( 𝐷 ‘ ( 𝐾 ‘ 1 ) ) = 0 )
141 65 92 139 140 syl3anc ( ⊤ → ( 𝐷 ‘ ( 𝐾 ‘ 1 ) ) = 0 )
142 drngdomn ( 𝑄 ∈ DivRing → 𝑄 ∈ Domn )
143 63 142 mp1i ( ⊤ → 𝑄 ∈ Domn )
144 35 37 negne0d ( ⊤ → - 3 ≠ 0 )
145 8 9 58 54 82 ply1scln0 ( ( 𝑄 ∈ Ring ∧ - 3 ∈ ℚ ∧ - 3 ≠ 0 ) → ( 𝐾 ‘ - 3 ) ≠ ( 0g𝑃 ) )
146 65 87 144 145 syl3anc ( ⊤ → ( 𝐾 ‘ - 3 ) ≠ ( 0g𝑃 ) )
147 107 a1i ( ⊤ → ℂfld ∈ CRing )
148 drngnzr ( ℂfld ∈ DivRing → ℂfld ∈ NzRing )
149 20 148 mp1i ( ⊤ → ℂfld ∈ NzRing )
150 22 a1i ( ⊤ → ℚ ∈ ( SubRing ‘ ℂfld ) )
151 10 54 4 8 147 149 150 vr1nz ( ⊤ → 𝑋 ≠ ( 0g𝑃 ) )
152 11 8 60 6 54 143 88 146 76 151 deg1mul ( ⊤ → ( 𝐷 ‘ ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ) = ( ( 𝐷 ‘ ( 𝐾 ‘ - 3 ) ) + ( 𝐷𝑋 ) ) )
153 11 8 82 9 58 deg1scl ( ( 𝑄 ∈ Ring ∧ - 3 ∈ ℚ ∧ - 3 ≠ 0 ) → ( 𝐷 ‘ ( 𝐾 ‘ - 3 ) ) = 0 )
154 65 87 144 153 syl3anc ( ⊤ → ( 𝐷 ‘ ( 𝐾 ‘ - 3 ) ) = 0 )
155 drngnzr ( 𝑄 ∈ DivRing → 𝑄 ∈ NzRing )
156 63 155 mp1i ( ⊤ → 𝑄 ∈ NzRing )
157 11 8 10 156 deg1vr ( ⊤ → ( 𝐷𝑋 ) = 1 )
158 154 157 oveq12d ( ⊤ → ( ( 𝐷 ‘ ( 𝐾 ‘ - 3 ) ) + ( 𝐷𝑋 ) ) = ( 0 + 1 ) )
159 1cnd ( ⊤ → 1 ∈ ℂ )
160 159 addlidd ( ⊤ → ( 0 + 1 ) = 1 )
161 152 158 160 3eqtrd ( ⊤ → ( 𝐷 ‘ ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ) = 1 )
162 138 141 161 3brtr4d ( ⊤ → ( 𝐷 ‘ ( 𝐾 ‘ 1 ) ) < ( 𝐷 ‘ ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ) )
163 8 11 65 60 5 89 93 162 deg1add ( ⊤ → ( 𝐷 ‘ ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) = ( 𝐷 ‘ ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ) )
164 163 161 eqtrd ( ⊤ → ( 𝐷 ‘ ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) = 1 )
165 11 8 10 69 7 deg1pw ( ( 𝑄 ∈ NzRing ∧ 3 ∈ ℕ0 ) → ( 𝐷 ‘ ( 3 𝑋 ) ) = 3 )
166 156 74 165 syl2anc ( ⊤ → ( 𝐷 ‘ ( 3 𝑋 ) ) = 3 )
167 136 164 166 3brtr4d ( ⊤ → ( 𝐷 ‘ ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) < ( 𝐷 ‘ ( 3 𝑋 ) ) )
168 8 11 65 60 5 77 94 167 deg1add ( ⊤ → ( 𝐷 ‘ ( ( 3 𝑋 ) + ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ) = ( 𝐷 ‘ ( 3 𝑋 ) ) )
169 134 168 166 3eqtrd ( ⊤ → ( 𝐷𝐹 ) = 3 )
170 58 59 11 8 60 62 96 132 169 ply1dg3rt0irred ( ⊤ → 𝐹 ∈ ( Irred ‘ 𝑃 ) )
171 eqid ( Irred ‘ 𝑃 ) = ( Irred ‘ 𝑃 )
172 171 54 irredn0 ( ( 𝑃 ∈ Ring ∧ 𝐹 ∈ ( Irred ‘ 𝑃 ) ) → 𝐹 ≠ ( 0g𝑃 ) )
173 67 170 172 syl2anc ( ⊤ → 𝐹 ≠ ( 0g𝑃 ) )
174 169 fveq2d ( ⊤ → ( ( coe1𝐹 ) ‘ ( 𝐷𝐹 ) ) = ( ( coe1𝐹 ) ‘ 3 ) )
175 133 fveq2d ( ⊤ → ( coe1𝐹 ) = ( coe1 ‘ ( ( 3 𝑋 ) + ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ) )
176 175 fveq1d ( ⊤ → ( ( coe1𝐹 ) ‘ 3 ) = ( ( coe1 ‘ ( ( 3 𝑋 ) + ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ) ‘ 3 ) )
177 cnfldadd + = ( +g ‘ ℂfld )
178 4 177 ressplusg ( ℚ ∈ ( SubRing ‘ ℂfld ) → + = ( +g𝑄 ) )
179 22 178 ax-mp + = ( +g𝑄 )
180 8 60 5 179 coe1addfv ( ( ( 𝑄 ∈ Ring ∧ ( 3 𝑋 ) ∈ ( Base ‘ 𝑃 ) ∧ ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ∈ ( Base ‘ 𝑃 ) ) ∧ 3 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 3 𝑋 ) + ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ) ‘ 3 ) = ( ( ( coe1 ‘ ( 3 𝑋 ) ) ‘ 3 ) + ( ( coe1 ‘ ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ‘ 3 ) ) )
181 65 77 94 74 180 syl31anc ( ⊤ → ( ( coe1 ‘ ( ( 3 𝑋 ) + ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ) ‘ 3 ) = ( ( ( coe1 ‘ ( 3 𝑋 ) ) ‘ 3 ) + ( ( coe1 ‘ ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ‘ 3 ) ) )
182 iftrue ( 𝑖 = 3 → if ( 𝑖 = 3 , 1 , 0 ) = 1 )
183 4 qrng1 1 = ( 1r𝑄 )
184 8 10 7 65 74 58 183 coe1mon ( ⊤ → ( coe1 ‘ ( 3 𝑋 ) ) = ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 3 , 1 , 0 ) ) )
185 182 184 74 159 fvmptd4 ( ⊤ → ( ( coe1 ‘ ( 3 𝑋 ) ) ‘ 3 ) = 1 )
186 8 60 5 179 coe1addfv ( ( ( 𝑄 ∈ Ring ∧ ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝐾 ‘ 1 ) ∈ ( Base ‘ 𝑃 ) ) ∧ 3 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ‘ 3 ) = ( ( ( coe1 ‘ ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ) ‘ 3 ) + ( ( coe1 ‘ ( 𝐾 ‘ 1 ) ) ‘ 3 ) ) )
187 65 89 93 74 186 syl31anc ( ⊤ → ( ( coe1 ‘ ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ‘ 3 ) = ( ( ( coe1 ‘ ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ) ‘ 3 ) + ( ( coe1 ‘ ( 𝐾 ‘ 1 ) ) ‘ 3 ) ) )
188 8 ply1assa ( 𝑄 ∈ CRing → 𝑃 ∈ AssAlg )
189 97 188 syl ( ⊤ → 𝑃 ∈ AssAlg )
190 eqid ( ·𝑠𝑃 ) = ( ·𝑠𝑃 )
191 9 79 82 60 6 190 asclmul1 ( ( 𝑃 ∈ AssAlg ∧ - 3 ∈ ℚ ∧ 𝑋 ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝐾 ‘ - 3 ) · 𝑋 ) = ( - 3 ( ·𝑠𝑃 ) 𝑋 ) )
192 189 87 76 191 syl3anc ( ⊤ → ( ( 𝐾 ‘ - 3 ) · 𝑋 ) = ( - 3 ( ·𝑠𝑃 ) 𝑋 ) )
193 70 7 mulg1 ( 𝑋 ∈ ( Base ‘ 𝑃 ) → ( 1 𝑋 ) = 𝑋 )
194 76 193 syl ( ⊤ → ( 1 𝑋 ) = 𝑋 )
195 194 oveq2d ( ⊤ → ( - 3 ( ·𝑠𝑃 ) ( 1 𝑋 ) ) = ( - 3 ( ·𝑠𝑃 ) 𝑋 ) )
196 192 195 eqtr4d ( ⊤ → ( ( 𝐾 ‘ - 3 ) · 𝑋 ) = ( - 3 ( ·𝑠𝑃 ) ( 1 𝑋 ) ) )
197 196 fveq2d ( ⊤ → ( coe1 ‘ ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ) = ( coe1 ‘ ( - 3 ( ·𝑠𝑃 ) ( 1 𝑋 ) ) ) )
198 197 fveq1d ( ⊤ → ( ( coe1 ‘ ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ) ‘ 3 ) = ( ( coe1 ‘ ( - 3 ( ·𝑠𝑃 ) ( 1 𝑋 ) ) ) ‘ 3 ) )
199 1nn0 1 ∈ ℕ0
200 199 a1i ( ⊤ → 1 ∈ ℕ0 )
201 1red ( ⊤ → 1 ∈ ℝ )
202 201 136 ltned ( ⊤ → 1 ≠ 3 )
203 58 82 8 10 190 69 7 65 87 200 74 202 coe1tmfv2 ( ⊤ → ( ( coe1 ‘ ( - 3 ( ·𝑠𝑃 ) ( 1 𝑋 ) ) ) ‘ 3 ) = 0 )
204 198 203 eqtrd ( ⊤ → ( ( coe1 ‘ ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ) ‘ 3 ) = 0 )
205 8 9 82 58 coe1scl ( ( 𝑄 ∈ Ring ∧ 1 ∈ ℚ ) → ( coe1 ‘ ( 𝐾 ‘ 1 ) ) = ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , 1 , 0 ) ) )
206 65 92 205 syl2anc ( ⊤ → ( coe1 ‘ ( 𝐾 ‘ 1 ) ) = ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , 1 , 0 ) ) )
207 simpr ( ( ⊤ ∧ 𝑖 = 3 ) → 𝑖 = 3 )
208 36 a1i ( ( ⊤ ∧ 𝑖 = 3 ) → 3 ≠ 0 )
209 207 208 eqnetrd ( ( ⊤ ∧ 𝑖 = 3 ) → 𝑖 ≠ 0 )
210 209 neneqd ( ( ⊤ ∧ 𝑖 = 3 ) → ¬ 𝑖 = 0 )
211 210 iffalsed ( ( ⊤ ∧ 𝑖 = 3 ) → if ( 𝑖 = 0 , 1 , 0 ) = 0 )
212 0zd ( ⊤ → 0 ∈ ℤ )
213 206 211 74 212 fvmptd ( ⊤ → ( ( coe1 ‘ ( 𝐾 ‘ 1 ) ) ‘ 3 ) = 0 )
214 204 213 oveq12d ( ⊤ → ( ( ( coe1 ‘ ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ) ‘ 3 ) + ( ( coe1 ‘ ( 𝐾 ‘ 1 ) ) ‘ 3 ) ) = ( 0 + 0 ) )
215 00id ( 0 + 0 ) = 0
216 215 a1i ( ⊤ → ( 0 + 0 ) = 0 )
217 187 214 216 3eqtrd ( ⊤ → ( ( coe1 ‘ ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ‘ 3 ) = 0 )
218 185 217 oveq12d ( ⊤ → ( ( ( coe1 ‘ ( 3 𝑋 ) ) ‘ 3 ) + ( ( coe1 ‘ ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ‘ 3 ) ) = ( 1 + 0 ) )
219 159 addridd ( ⊤ → ( 1 + 0 ) = 1 )
220 218 219 eqtrd ( ⊤ → ( ( ( coe1 ‘ ( 3 𝑋 ) ) ‘ 3 ) + ( ( coe1 ‘ ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ‘ 3 ) ) = 1 )
221 176 181 220 3eqtrd ( ⊤ → ( ( coe1𝐹 ) ‘ 3 ) = 1 )
222 174 221 eqtrd ( ⊤ → ( ( coe1𝐹 ) ‘ ( 𝐷𝐹 ) ) = 1 )
223 4 fveq2i ( Monic1p𝑄 ) = ( Monic1p ‘ ( ℂflds ℚ ) )
224 223 eqcomi ( Monic1p ‘ ( ℂflds ℚ ) ) = ( Monic1p𝑄 )
225 8 60 54 11 224 183 ismon1p ( 𝐹 ∈ ( Monic1p ‘ ( ℂflds ℚ ) ) ↔ ( 𝐹 ∈ ( Base ‘ 𝑃 ) ∧ 𝐹 ≠ ( 0g𝑃 ) ∧ ( ( coe1𝐹 ) ‘ ( 𝐷𝐹 ) ) = 1 ) )
226 96 173 222 225 syl3anbrc ( ⊤ → 𝐹 ∈ ( Monic1p ‘ ( ℂflds ℚ ) ) )
227 14 16 17 19 26 52 53 13 54 57 170 226 irredminply ( ⊤ → 𝐹 = ( 𝑀𝐴 ) )
228 227 169 jca ( ⊤ → ( 𝐹 = ( 𝑀𝐴 ) ∧ ( 𝐷𝐹 ) = 3 ) )
229 228 mptru ( 𝐹 = ( 𝑀𝐴 ) ∧ ( 𝐷𝐹 ) = 3 )