| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cos9thpiminplylem3.1 |
⊢ 𝑂 = ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) |
| 2 |
|
cos9thpiminplylem4.2 |
⊢ 𝑍 = ( 𝑂 ↑𝑐 ( 1 / 3 ) ) |
| 3 |
|
cos9thpiminplylem5.3 |
⊢ 𝐴 = ( 𝑍 + ( 1 / 𝑍 ) ) |
| 4 |
|
cos9thpiminply.q |
⊢ 𝑄 = ( ℂfld ↾s ℚ ) |
| 5 |
|
cos9thpiminply.4 |
⊢ + = ( +g ‘ 𝑃 ) |
| 6 |
|
cos9thpiminply.5 |
⊢ · = ( .r ‘ 𝑃 ) |
| 7 |
|
cos9thpiminply.6 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 8 |
|
cos9thpiminply.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑄 ) |
| 9 |
|
cos9thpiminply.k |
⊢ 𝐾 = ( algSc ‘ 𝑃 ) |
| 10 |
|
cos9thpiminply.x |
⊢ 𝑋 = ( var1 ‘ 𝑄 ) |
| 11 |
|
cos9thpiminply.d |
⊢ 𝐷 = ( deg1 ‘ 𝑄 ) |
| 12 |
|
cos9thpiminply.f |
⊢ 𝐹 = ( ( 3 ↑ 𝑋 ) + ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) |
| 13 |
|
cos9thpiminply.m |
⊢ 𝑀 = ( ℂfld minPoly ℚ ) |
| 14 |
|
eqid |
⊢ ( ℂfld evalSub1 ℚ ) = ( ℂfld evalSub1 ℚ ) |
| 15 |
4
|
fveq2i |
⊢ ( Poly1 ‘ 𝑄 ) = ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) |
| 16 |
8 15
|
eqtri |
⊢ 𝑃 = ( Poly1 ‘ ( ℂfld ↾s ℚ ) ) |
| 17 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 18 |
|
cnfldfld |
⊢ ℂfld ∈ Field |
| 19 |
18
|
a1i |
⊢ ( ⊤ → ℂfld ∈ Field ) |
| 20 |
|
cndrng |
⊢ ℂfld ∈ DivRing |
| 21 |
|
qsubdrg |
⊢ ( ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s ℚ ) ∈ DivRing ) |
| 22 |
21
|
simpli |
⊢ ℚ ∈ ( SubRing ‘ ℂfld ) |
| 23 |
21
|
simpri |
⊢ ( ℂfld ↾s ℚ ) ∈ DivRing |
| 24 |
|
issdrg |
⊢ ( ℚ ∈ ( SubDRing ‘ ℂfld ) ↔ ( ℂfld ∈ DivRing ∧ ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s ℚ ) ∈ DivRing ) ) |
| 25 |
20 22 23 24
|
mpbir3an |
⊢ ℚ ∈ ( SubDRing ‘ ℂfld ) |
| 26 |
25
|
a1i |
⊢ ( ⊤ → ℚ ∈ ( SubDRing ‘ ℂfld ) ) |
| 27 |
|
ax-icn |
⊢ i ∈ ℂ |
| 28 |
27
|
a1i |
⊢ ( ⊤ → i ∈ ℂ ) |
| 29 |
|
2cnd |
⊢ ( ⊤ → 2 ∈ ℂ ) |
| 30 |
|
picn |
⊢ π ∈ ℂ |
| 31 |
30
|
a1i |
⊢ ( ⊤ → π ∈ ℂ ) |
| 32 |
29 31
|
mulcld |
⊢ ( ⊤ → ( 2 · π ) ∈ ℂ ) |
| 33 |
28 32
|
mulcld |
⊢ ( ⊤ → ( i · ( 2 · π ) ) ∈ ℂ ) |
| 34 |
|
3cn |
⊢ 3 ∈ ℂ |
| 35 |
34
|
a1i |
⊢ ( ⊤ → 3 ∈ ℂ ) |
| 36 |
|
3ne0 |
⊢ 3 ≠ 0 |
| 37 |
36
|
a1i |
⊢ ( ⊤ → 3 ≠ 0 ) |
| 38 |
33 35 37
|
divcld |
⊢ ( ⊤ → ( ( i · ( 2 · π ) ) / 3 ) ∈ ℂ ) |
| 39 |
38
|
efcld |
⊢ ( ⊤ → ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ∈ ℂ ) |
| 40 |
1 39
|
eqeltrid |
⊢ ( ⊤ → 𝑂 ∈ ℂ ) |
| 41 |
35 37
|
reccld |
⊢ ( ⊤ → ( 1 / 3 ) ∈ ℂ ) |
| 42 |
40 41
|
cxpcld |
⊢ ( ⊤ → ( 𝑂 ↑𝑐 ( 1 / 3 ) ) ∈ ℂ ) |
| 43 |
2 42
|
eqeltrid |
⊢ ( ⊤ → 𝑍 ∈ ℂ ) |
| 44 |
2
|
a1i |
⊢ ( ⊤ → 𝑍 = ( 𝑂 ↑𝑐 ( 1 / 3 ) ) ) |
| 45 |
1
|
a1i |
⊢ ( ⊤ → 𝑂 = ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ) |
| 46 |
38
|
efne0d |
⊢ ( ⊤ → ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ≠ 0 ) |
| 47 |
45 46
|
eqnetrd |
⊢ ( ⊤ → 𝑂 ≠ 0 ) |
| 48 |
40 47 41
|
cxpne0d |
⊢ ( ⊤ → ( 𝑂 ↑𝑐 ( 1 / 3 ) ) ≠ 0 ) |
| 49 |
44 48
|
eqnetrd |
⊢ ( ⊤ → 𝑍 ≠ 0 ) |
| 50 |
43 49
|
reccld |
⊢ ( ⊤ → ( 1 / 𝑍 ) ∈ ℂ ) |
| 51 |
43 50
|
addcld |
⊢ ( ⊤ → ( 𝑍 + ( 1 / 𝑍 ) ) ∈ ℂ ) |
| 52 |
3 51
|
eqeltrid |
⊢ ( ⊤ → 𝐴 ∈ ℂ ) |
| 53 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
| 54 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 55 |
1 2 3 4 5 6 7 8 9 10 11 12 52
|
cos9thpiminplylem6 |
⊢ ( ⊤ → ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝐹 ) ‘ 𝐴 ) = ( ( 𝐴 ↑ 3 ) + ( ( - 3 · 𝐴 ) + 1 ) ) ) |
| 56 |
1 2 3
|
cos9thpiminplylem5 |
⊢ ( ( 𝐴 ↑ 3 ) + ( ( - 3 · 𝐴 ) + 1 ) ) = 0 |
| 57 |
55 56
|
eqtrdi |
⊢ ( ⊤ → ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝐹 ) ‘ 𝐴 ) = 0 ) |
| 58 |
4
|
qrng0 |
⊢ 0 = ( 0g ‘ 𝑄 ) |
| 59 |
|
eqid |
⊢ ( eval1 ‘ 𝑄 ) = ( eval1 ‘ 𝑄 ) |
| 60 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 61 |
4
|
qfld |
⊢ 𝑄 ∈ Field |
| 62 |
61
|
a1i |
⊢ ( ⊤ → 𝑄 ∈ Field ) |
| 63 |
4
|
qdrng |
⊢ 𝑄 ∈ DivRing |
| 64 |
63
|
a1i |
⊢ ( ⊤ → 𝑄 ∈ DivRing ) |
| 65 |
64
|
drngringd |
⊢ ( ⊤ → 𝑄 ∈ Ring ) |
| 66 |
8
|
ply1ring |
⊢ ( 𝑄 ∈ Ring → 𝑃 ∈ Ring ) |
| 67 |
65 66
|
syl |
⊢ ( ⊤ → 𝑃 ∈ Ring ) |
| 68 |
67
|
ringgrpd |
⊢ ( ⊤ → 𝑃 ∈ Grp ) |
| 69 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
| 70 |
69 60
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
| 71 |
69
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 72 |
67 71
|
syl |
⊢ ( ⊤ → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 73 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 74 |
73
|
a1i |
⊢ ( ⊤ → 3 ∈ ℕ0 ) |
| 75 |
10 8 60
|
vr1cl |
⊢ ( 𝑄 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 76 |
65 75
|
syl |
⊢ ( ⊤ → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 77 |
70 7 72 74 76
|
mulgnn0cld |
⊢ ( ⊤ → ( 3 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
| 78 |
8
|
ply1sca |
⊢ ( 𝑄 ∈ DivRing → 𝑄 = ( Scalar ‘ 𝑃 ) ) |
| 79 |
63 78
|
ax-mp |
⊢ 𝑄 = ( Scalar ‘ 𝑃 ) |
| 80 |
8
|
ply1lmod |
⊢ ( 𝑄 ∈ Ring → 𝑃 ∈ LMod ) |
| 81 |
65 80
|
syl |
⊢ ( ⊤ → 𝑃 ∈ LMod ) |
| 82 |
4
|
qrngbas |
⊢ ℚ = ( Base ‘ 𝑄 ) |
| 83 |
9 79 67 81 82 60
|
asclf |
⊢ ( ⊤ → 𝐾 : ℚ ⟶ ( Base ‘ 𝑃 ) ) |
| 84 |
74
|
nn0zd |
⊢ ( ⊤ → 3 ∈ ℤ ) |
| 85 |
|
zq |
⊢ ( 3 ∈ ℤ → 3 ∈ ℚ ) |
| 86 |
|
qnegcl |
⊢ ( 3 ∈ ℚ → - 3 ∈ ℚ ) |
| 87 |
84 85 86
|
3syl |
⊢ ( ⊤ → - 3 ∈ ℚ ) |
| 88 |
83 87
|
ffvelcdmd |
⊢ ( ⊤ → ( 𝐾 ‘ - 3 ) ∈ ( Base ‘ 𝑃 ) ) |
| 89 |
60 6 67 88 76
|
ringcld |
⊢ ( ⊤ → ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
| 90 |
|
1zzd |
⊢ ( ⊤ → 1 ∈ ℤ ) |
| 91 |
|
zq |
⊢ ( 1 ∈ ℤ → 1 ∈ ℚ ) |
| 92 |
90 91
|
syl |
⊢ ( ⊤ → 1 ∈ ℚ ) |
| 93 |
83 92
|
ffvelcdmd |
⊢ ( ⊤ → ( 𝐾 ‘ 1 ) ∈ ( Base ‘ 𝑃 ) ) |
| 94 |
60 5 68 89 93
|
grpcld |
⊢ ( ⊤ → ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 95 |
60 5 68 77 94
|
grpcld |
⊢ ( ⊤ → ( ( 3 ↑ 𝑋 ) + ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 96 |
12 95
|
eqeltrid |
⊢ ( ⊤ → 𝐹 ∈ ( Base ‘ 𝑃 ) ) |
| 97 |
62
|
fldcrngd |
⊢ ( ⊤ → 𝑄 ∈ CRing ) |
| 98 |
59 8 60 97 82 96
|
evl1fvf |
⊢ ( ⊤ → ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) : ℚ ⟶ ℚ ) |
| 99 |
98
|
ffnd |
⊢ ( ⊤ → ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) Fn ℚ ) |
| 100 |
|
fniniseg2 |
⊢ ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) Fn ℚ → ( ◡ ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) “ { 0 } ) = { 𝑥 ∈ ℚ ∣ ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) = 0 } ) |
| 101 |
99 100
|
syl |
⊢ ( ⊤ → ( ◡ ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) “ { 0 } ) = { 𝑥 ∈ ℚ ∣ ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) = 0 } ) |
| 102 |
59 82
|
evl1fval1 |
⊢ ( eval1 ‘ 𝑄 ) = ( 𝑄 evalSub1 ℚ ) |
| 103 |
102
|
a1i |
⊢ ( 𝑥 ∈ ℚ → ( eval1 ‘ 𝑄 ) = ( 𝑄 evalSub1 ℚ ) ) |
| 104 |
103
|
fveq1d |
⊢ ( 𝑥 ∈ ℚ → ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) = ( ( 𝑄 evalSub1 ℚ ) ‘ 𝐹 ) ) |
| 105 |
104
|
fveq1d |
⊢ ( 𝑥 ∈ ℚ → ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝑄 evalSub1 ℚ ) ‘ 𝐹 ) ‘ 𝑥 ) ) |
| 106 |
|
eqid |
⊢ ( 𝑄 evalSub1 ℚ ) = ( 𝑄 evalSub1 ℚ ) |
| 107 |
|
cncrng |
⊢ ℂfld ∈ CRing |
| 108 |
107
|
a1i |
⊢ ( 𝑥 ∈ ℚ → ℂfld ∈ CRing ) |
| 109 |
22
|
a1i |
⊢ ( 𝑥 ∈ ℚ → ℚ ∈ ( SubRing ‘ ℂfld ) ) |
| 110 |
97
|
mptru |
⊢ 𝑄 ∈ CRing |
| 111 |
110
|
a1i |
⊢ ( 𝑥 ∈ ℚ → 𝑄 ∈ CRing ) |
| 112 |
111
|
crngringd |
⊢ ( 𝑥 ∈ ℚ → 𝑄 ∈ Ring ) |
| 113 |
82
|
subrgid |
⊢ ( 𝑄 ∈ Ring → ℚ ∈ ( SubRing ‘ 𝑄 ) ) |
| 114 |
112 113
|
syl |
⊢ ( 𝑥 ∈ ℚ → ℚ ∈ ( SubRing ‘ 𝑄 ) ) |
| 115 |
96
|
mptru |
⊢ 𝐹 ∈ ( Base ‘ 𝑃 ) |
| 116 |
115
|
a1i |
⊢ ( 𝑥 ∈ ℚ → 𝐹 ∈ ( Base ‘ 𝑃 ) ) |
| 117 |
4 14 106 8 4 60 108 109 114 116
|
ressply1evls1 |
⊢ ( 𝑥 ∈ ℚ → ( ( 𝑄 evalSub1 ℚ ) ‘ 𝐹 ) = ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝐹 ) ↾ ℚ ) ) |
| 118 |
117
|
fveq1d |
⊢ ( 𝑥 ∈ ℚ → ( ( ( 𝑄 evalSub1 ℚ ) ‘ 𝐹 ) ‘ 𝑥 ) = ( ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝐹 ) ↾ ℚ ) ‘ 𝑥 ) ) |
| 119 |
|
fvres |
⊢ ( 𝑥 ∈ ℚ → ( ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝐹 ) ↾ ℚ ) ‘ 𝑥 ) = ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝐹 ) ‘ 𝑥 ) ) |
| 120 |
118 119
|
eqtr2d |
⊢ ( 𝑥 ∈ ℚ → ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝑄 evalSub1 ℚ ) ‘ 𝐹 ) ‘ 𝑥 ) ) |
| 121 |
|
qcn |
⊢ ( 𝑥 ∈ ℚ → 𝑥 ∈ ℂ ) |
| 122 |
1 2 3 4 5 6 7 8 9 10 11 12 121
|
cos9thpiminplylem6 |
⊢ ( 𝑥 ∈ ℚ → ( ( ( ℂfld evalSub1 ℚ ) ‘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝑥 ↑ 3 ) + ( ( - 3 · 𝑥 ) + 1 ) ) ) |
| 123 |
105 120 122
|
3eqtr2d |
⊢ ( 𝑥 ∈ ℚ → ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝑥 ↑ 3 ) + ( ( - 3 · 𝑥 ) + 1 ) ) ) |
| 124 |
|
id |
⊢ ( 𝑥 ∈ ℚ → 𝑥 ∈ ℚ ) |
| 125 |
124
|
cos9thpiminplylem2 |
⊢ ( 𝑥 ∈ ℚ → ( ( 𝑥 ↑ 3 ) + ( ( - 3 · 𝑥 ) + 1 ) ) ≠ 0 ) |
| 126 |
123 125
|
eqnetrd |
⊢ ( 𝑥 ∈ ℚ → ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) ≠ 0 ) |
| 127 |
126
|
neneqd |
⊢ ( 𝑥 ∈ ℚ → ¬ ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) = 0 ) |
| 128 |
127
|
rgen |
⊢ ∀ 𝑥 ∈ ℚ ¬ ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) = 0 |
| 129 |
128
|
a1i |
⊢ ( ⊤ → ∀ 𝑥 ∈ ℚ ¬ ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) = 0 ) |
| 130 |
|
rabeq0 |
⊢ ( { 𝑥 ∈ ℚ ∣ ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) = 0 } = ∅ ↔ ∀ 𝑥 ∈ ℚ ¬ ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) = 0 ) |
| 131 |
129 130
|
sylibr |
⊢ ( ⊤ → { 𝑥 ∈ ℚ ∣ ( ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) ‘ 𝑥 ) = 0 } = ∅ ) |
| 132 |
101 131
|
eqtrd |
⊢ ( ⊤ → ( ◡ ( ( eval1 ‘ 𝑄 ) ‘ 𝐹 ) “ { 0 } ) = ∅ ) |
| 133 |
12
|
a1i |
⊢ ( ⊤ → 𝐹 = ( ( 3 ↑ 𝑋 ) + ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ) |
| 134 |
133
|
fveq2d |
⊢ ( ⊤ → ( 𝐷 ‘ 𝐹 ) = ( 𝐷 ‘ ( ( 3 ↑ 𝑋 ) + ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ) ) |
| 135 |
|
1lt3 |
⊢ 1 < 3 |
| 136 |
135
|
a1i |
⊢ ( ⊤ → 1 < 3 ) |
| 137 |
|
0lt1 |
⊢ 0 < 1 |
| 138 |
137
|
a1i |
⊢ ( ⊤ → 0 < 1 ) |
| 139 |
138
|
gt0ne0d |
⊢ ( ⊤ → 1 ≠ 0 ) |
| 140 |
11 8 82 9 58
|
deg1scl |
⊢ ( ( 𝑄 ∈ Ring ∧ 1 ∈ ℚ ∧ 1 ≠ 0 ) → ( 𝐷 ‘ ( 𝐾 ‘ 1 ) ) = 0 ) |
| 141 |
65 92 139 140
|
syl3anc |
⊢ ( ⊤ → ( 𝐷 ‘ ( 𝐾 ‘ 1 ) ) = 0 ) |
| 142 |
|
drngdomn |
⊢ ( 𝑄 ∈ DivRing → 𝑄 ∈ Domn ) |
| 143 |
63 142
|
mp1i |
⊢ ( ⊤ → 𝑄 ∈ Domn ) |
| 144 |
35 37
|
negne0d |
⊢ ( ⊤ → - 3 ≠ 0 ) |
| 145 |
8 9 58 54 82
|
ply1scln0 |
⊢ ( ( 𝑄 ∈ Ring ∧ - 3 ∈ ℚ ∧ - 3 ≠ 0 ) → ( 𝐾 ‘ - 3 ) ≠ ( 0g ‘ 𝑃 ) ) |
| 146 |
65 87 144 145
|
syl3anc |
⊢ ( ⊤ → ( 𝐾 ‘ - 3 ) ≠ ( 0g ‘ 𝑃 ) ) |
| 147 |
107
|
a1i |
⊢ ( ⊤ → ℂfld ∈ CRing ) |
| 148 |
|
drngnzr |
⊢ ( ℂfld ∈ DivRing → ℂfld ∈ NzRing ) |
| 149 |
20 148
|
mp1i |
⊢ ( ⊤ → ℂfld ∈ NzRing ) |
| 150 |
22
|
a1i |
⊢ ( ⊤ → ℚ ∈ ( SubRing ‘ ℂfld ) ) |
| 151 |
10 54 4 8 147 149 150
|
vr1nz |
⊢ ( ⊤ → 𝑋 ≠ ( 0g ‘ 𝑃 ) ) |
| 152 |
11 8 60 6 54 143 88 146 76 151
|
deg1mul |
⊢ ( ⊤ → ( 𝐷 ‘ ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ) = ( ( 𝐷 ‘ ( 𝐾 ‘ - 3 ) ) + ( 𝐷 ‘ 𝑋 ) ) ) |
| 153 |
11 8 82 9 58
|
deg1scl |
⊢ ( ( 𝑄 ∈ Ring ∧ - 3 ∈ ℚ ∧ - 3 ≠ 0 ) → ( 𝐷 ‘ ( 𝐾 ‘ - 3 ) ) = 0 ) |
| 154 |
65 87 144 153
|
syl3anc |
⊢ ( ⊤ → ( 𝐷 ‘ ( 𝐾 ‘ - 3 ) ) = 0 ) |
| 155 |
|
drngnzr |
⊢ ( 𝑄 ∈ DivRing → 𝑄 ∈ NzRing ) |
| 156 |
63 155
|
mp1i |
⊢ ( ⊤ → 𝑄 ∈ NzRing ) |
| 157 |
11 8 10 156
|
deg1vr |
⊢ ( ⊤ → ( 𝐷 ‘ 𝑋 ) = 1 ) |
| 158 |
154 157
|
oveq12d |
⊢ ( ⊤ → ( ( 𝐷 ‘ ( 𝐾 ‘ - 3 ) ) + ( 𝐷 ‘ 𝑋 ) ) = ( 0 + 1 ) ) |
| 159 |
|
1cnd |
⊢ ( ⊤ → 1 ∈ ℂ ) |
| 160 |
159
|
addlidd |
⊢ ( ⊤ → ( 0 + 1 ) = 1 ) |
| 161 |
152 158 160
|
3eqtrd |
⊢ ( ⊤ → ( 𝐷 ‘ ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ) = 1 ) |
| 162 |
138 141 161
|
3brtr4d |
⊢ ( ⊤ → ( 𝐷 ‘ ( 𝐾 ‘ 1 ) ) < ( 𝐷 ‘ ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ) ) |
| 163 |
8 11 65 60 5 89 93 162
|
deg1add |
⊢ ( ⊤ → ( 𝐷 ‘ ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) = ( 𝐷 ‘ ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ) ) |
| 164 |
163 161
|
eqtrd |
⊢ ( ⊤ → ( 𝐷 ‘ ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) = 1 ) |
| 165 |
11 8 10 69 7
|
deg1pw |
⊢ ( ( 𝑄 ∈ NzRing ∧ 3 ∈ ℕ0 ) → ( 𝐷 ‘ ( 3 ↑ 𝑋 ) ) = 3 ) |
| 166 |
156 74 165
|
syl2anc |
⊢ ( ⊤ → ( 𝐷 ‘ ( 3 ↑ 𝑋 ) ) = 3 ) |
| 167 |
136 164 166
|
3brtr4d |
⊢ ( ⊤ → ( 𝐷 ‘ ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) < ( 𝐷 ‘ ( 3 ↑ 𝑋 ) ) ) |
| 168 |
8 11 65 60 5 77 94 167
|
deg1add |
⊢ ( ⊤ → ( 𝐷 ‘ ( ( 3 ↑ 𝑋 ) + ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ) = ( 𝐷 ‘ ( 3 ↑ 𝑋 ) ) ) |
| 169 |
134 168 166
|
3eqtrd |
⊢ ( ⊤ → ( 𝐷 ‘ 𝐹 ) = 3 ) |
| 170 |
58 59 11 8 60 62 96 132 169
|
ply1dg3rt0irred |
⊢ ( ⊤ → 𝐹 ∈ ( Irred ‘ 𝑃 ) ) |
| 171 |
|
eqid |
⊢ ( Irred ‘ 𝑃 ) = ( Irred ‘ 𝑃 ) |
| 172 |
171 54
|
irredn0 |
⊢ ( ( 𝑃 ∈ Ring ∧ 𝐹 ∈ ( Irred ‘ 𝑃 ) ) → 𝐹 ≠ ( 0g ‘ 𝑃 ) ) |
| 173 |
67 170 172
|
syl2anc |
⊢ ( ⊤ → 𝐹 ≠ ( 0g ‘ 𝑃 ) ) |
| 174 |
169
|
fveq2d |
⊢ ( ⊤ → ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) = ( ( coe1 ‘ 𝐹 ) ‘ 3 ) ) |
| 175 |
133
|
fveq2d |
⊢ ( ⊤ → ( coe1 ‘ 𝐹 ) = ( coe1 ‘ ( ( 3 ↑ 𝑋 ) + ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ) ) |
| 176 |
175
|
fveq1d |
⊢ ( ⊤ → ( ( coe1 ‘ 𝐹 ) ‘ 3 ) = ( ( coe1 ‘ ( ( 3 ↑ 𝑋 ) + ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ) ‘ 3 ) ) |
| 177 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
| 178 |
4 177
|
ressplusg |
⊢ ( ℚ ∈ ( SubRing ‘ ℂfld ) → + = ( +g ‘ 𝑄 ) ) |
| 179 |
22 178
|
ax-mp |
⊢ + = ( +g ‘ 𝑄 ) |
| 180 |
8 60 5 179
|
coe1addfv |
⊢ ( ( ( 𝑄 ∈ Ring ∧ ( 3 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ∧ ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ∈ ( Base ‘ 𝑃 ) ) ∧ 3 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 3 ↑ 𝑋 ) + ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ) ‘ 3 ) = ( ( ( coe1 ‘ ( 3 ↑ 𝑋 ) ) ‘ 3 ) + ( ( coe1 ‘ ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ‘ 3 ) ) ) |
| 181 |
65 77 94 74 180
|
syl31anc |
⊢ ( ⊤ → ( ( coe1 ‘ ( ( 3 ↑ 𝑋 ) + ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ) ‘ 3 ) = ( ( ( coe1 ‘ ( 3 ↑ 𝑋 ) ) ‘ 3 ) + ( ( coe1 ‘ ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ‘ 3 ) ) ) |
| 182 |
|
iftrue |
⊢ ( 𝑖 = 3 → if ( 𝑖 = 3 , 1 , 0 ) = 1 ) |
| 183 |
4
|
qrng1 |
⊢ 1 = ( 1r ‘ 𝑄 ) |
| 184 |
8 10 7 65 74 58 183
|
coe1mon |
⊢ ( ⊤ → ( coe1 ‘ ( 3 ↑ 𝑋 ) ) = ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 3 , 1 , 0 ) ) ) |
| 185 |
182 184 74 159
|
fvmptd4 |
⊢ ( ⊤ → ( ( coe1 ‘ ( 3 ↑ 𝑋 ) ) ‘ 3 ) = 1 ) |
| 186 |
8 60 5 179
|
coe1addfv |
⊢ ( ( ( 𝑄 ∈ Ring ∧ ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝐾 ‘ 1 ) ∈ ( Base ‘ 𝑃 ) ) ∧ 3 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ‘ 3 ) = ( ( ( coe1 ‘ ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ) ‘ 3 ) + ( ( coe1 ‘ ( 𝐾 ‘ 1 ) ) ‘ 3 ) ) ) |
| 187 |
65 89 93 74 186
|
syl31anc |
⊢ ( ⊤ → ( ( coe1 ‘ ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ‘ 3 ) = ( ( ( coe1 ‘ ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ) ‘ 3 ) + ( ( coe1 ‘ ( 𝐾 ‘ 1 ) ) ‘ 3 ) ) ) |
| 188 |
8
|
ply1assa |
⊢ ( 𝑄 ∈ CRing → 𝑃 ∈ AssAlg ) |
| 189 |
97 188
|
syl |
⊢ ( ⊤ → 𝑃 ∈ AssAlg ) |
| 190 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
| 191 |
9 79 82 60 6 190
|
asclmul1 |
⊢ ( ( 𝑃 ∈ AssAlg ∧ - 3 ∈ ℚ ∧ 𝑋 ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝐾 ‘ - 3 ) · 𝑋 ) = ( - 3 ( ·𝑠 ‘ 𝑃 ) 𝑋 ) ) |
| 192 |
189 87 76 191
|
syl3anc |
⊢ ( ⊤ → ( ( 𝐾 ‘ - 3 ) · 𝑋 ) = ( - 3 ( ·𝑠 ‘ 𝑃 ) 𝑋 ) ) |
| 193 |
70 7
|
mulg1 |
⊢ ( 𝑋 ∈ ( Base ‘ 𝑃 ) → ( 1 ↑ 𝑋 ) = 𝑋 ) |
| 194 |
76 193
|
syl |
⊢ ( ⊤ → ( 1 ↑ 𝑋 ) = 𝑋 ) |
| 195 |
194
|
oveq2d |
⊢ ( ⊤ → ( - 3 ( ·𝑠 ‘ 𝑃 ) ( 1 ↑ 𝑋 ) ) = ( - 3 ( ·𝑠 ‘ 𝑃 ) 𝑋 ) ) |
| 196 |
192 195
|
eqtr4d |
⊢ ( ⊤ → ( ( 𝐾 ‘ - 3 ) · 𝑋 ) = ( - 3 ( ·𝑠 ‘ 𝑃 ) ( 1 ↑ 𝑋 ) ) ) |
| 197 |
196
|
fveq2d |
⊢ ( ⊤ → ( coe1 ‘ ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ) = ( coe1 ‘ ( - 3 ( ·𝑠 ‘ 𝑃 ) ( 1 ↑ 𝑋 ) ) ) ) |
| 198 |
197
|
fveq1d |
⊢ ( ⊤ → ( ( coe1 ‘ ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ) ‘ 3 ) = ( ( coe1 ‘ ( - 3 ( ·𝑠 ‘ 𝑃 ) ( 1 ↑ 𝑋 ) ) ) ‘ 3 ) ) |
| 199 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 200 |
199
|
a1i |
⊢ ( ⊤ → 1 ∈ ℕ0 ) |
| 201 |
|
1red |
⊢ ( ⊤ → 1 ∈ ℝ ) |
| 202 |
201 136
|
ltned |
⊢ ( ⊤ → 1 ≠ 3 ) |
| 203 |
58 82 8 10 190 69 7 65 87 200 74 202
|
coe1tmfv2 |
⊢ ( ⊤ → ( ( coe1 ‘ ( - 3 ( ·𝑠 ‘ 𝑃 ) ( 1 ↑ 𝑋 ) ) ) ‘ 3 ) = 0 ) |
| 204 |
198 203
|
eqtrd |
⊢ ( ⊤ → ( ( coe1 ‘ ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ) ‘ 3 ) = 0 ) |
| 205 |
8 9 82 58
|
coe1scl |
⊢ ( ( 𝑄 ∈ Ring ∧ 1 ∈ ℚ ) → ( coe1 ‘ ( 𝐾 ‘ 1 ) ) = ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , 1 , 0 ) ) ) |
| 206 |
65 92 205
|
syl2anc |
⊢ ( ⊤ → ( coe1 ‘ ( 𝐾 ‘ 1 ) ) = ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , 1 , 0 ) ) ) |
| 207 |
|
simpr |
⊢ ( ( ⊤ ∧ 𝑖 = 3 ) → 𝑖 = 3 ) |
| 208 |
36
|
a1i |
⊢ ( ( ⊤ ∧ 𝑖 = 3 ) → 3 ≠ 0 ) |
| 209 |
207 208
|
eqnetrd |
⊢ ( ( ⊤ ∧ 𝑖 = 3 ) → 𝑖 ≠ 0 ) |
| 210 |
209
|
neneqd |
⊢ ( ( ⊤ ∧ 𝑖 = 3 ) → ¬ 𝑖 = 0 ) |
| 211 |
210
|
iffalsed |
⊢ ( ( ⊤ ∧ 𝑖 = 3 ) → if ( 𝑖 = 0 , 1 , 0 ) = 0 ) |
| 212 |
|
0zd |
⊢ ( ⊤ → 0 ∈ ℤ ) |
| 213 |
206 211 74 212
|
fvmptd |
⊢ ( ⊤ → ( ( coe1 ‘ ( 𝐾 ‘ 1 ) ) ‘ 3 ) = 0 ) |
| 214 |
204 213
|
oveq12d |
⊢ ( ⊤ → ( ( ( coe1 ‘ ( ( 𝐾 ‘ - 3 ) · 𝑋 ) ) ‘ 3 ) + ( ( coe1 ‘ ( 𝐾 ‘ 1 ) ) ‘ 3 ) ) = ( 0 + 0 ) ) |
| 215 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
| 216 |
215
|
a1i |
⊢ ( ⊤ → ( 0 + 0 ) = 0 ) |
| 217 |
187 214 216
|
3eqtrd |
⊢ ( ⊤ → ( ( coe1 ‘ ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ‘ 3 ) = 0 ) |
| 218 |
185 217
|
oveq12d |
⊢ ( ⊤ → ( ( ( coe1 ‘ ( 3 ↑ 𝑋 ) ) ‘ 3 ) + ( ( coe1 ‘ ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ‘ 3 ) ) = ( 1 + 0 ) ) |
| 219 |
159
|
addridd |
⊢ ( ⊤ → ( 1 + 0 ) = 1 ) |
| 220 |
218 219
|
eqtrd |
⊢ ( ⊤ → ( ( ( coe1 ‘ ( 3 ↑ 𝑋 ) ) ‘ 3 ) + ( ( coe1 ‘ ( ( ( 𝐾 ‘ - 3 ) · 𝑋 ) + ( 𝐾 ‘ 1 ) ) ) ‘ 3 ) ) = 1 ) |
| 221 |
176 181 220
|
3eqtrd |
⊢ ( ⊤ → ( ( coe1 ‘ 𝐹 ) ‘ 3 ) = 1 ) |
| 222 |
174 221
|
eqtrd |
⊢ ( ⊤ → ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) = 1 ) |
| 223 |
4
|
fveq2i |
⊢ ( Monic1p ‘ 𝑄 ) = ( Monic1p ‘ ( ℂfld ↾s ℚ ) ) |
| 224 |
223
|
eqcomi |
⊢ ( Monic1p ‘ ( ℂfld ↾s ℚ ) ) = ( Monic1p ‘ 𝑄 ) |
| 225 |
8 60 54 11 224 183
|
ismon1p |
⊢ ( 𝐹 ∈ ( Monic1p ‘ ( ℂfld ↾s ℚ ) ) ↔ ( 𝐹 ∈ ( Base ‘ 𝑃 ) ∧ 𝐹 ≠ ( 0g ‘ 𝑃 ) ∧ ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) = 1 ) ) |
| 226 |
96 173 222 225
|
syl3anbrc |
⊢ ( ⊤ → 𝐹 ∈ ( Monic1p ‘ ( ℂfld ↾s ℚ ) ) ) |
| 227 |
14 16 17 19 26 52 53 13 54 57 170 226
|
irredminply |
⊢ ( ⊤ → 𝐹 = ( 𝑀 ‘ 𝐴 ) ) |
| 228 |
227 169
|
jca |
⊢ ( ⊤ → ( 𝐹 = ( 𝑀 ‘ 𝐴 ) ∧ ( 𝐷 ‘ 𝐹 ) = 3 ) ) |
| 229 |
228
|
mptru |
⊢ ( 𝐹 = ( 𝑀 ‘ 𝐴 ) ∧ ( 𝐷 ‘ 𝐹 ) = 3 ) |