| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cos9thpiminplylem3.1 |
⊢ 𝑂 = ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) |
| 2 |
|
cos9thpiminplylem4.2 |
⊢ 𝑍 = ( 𝑂 ↑𝑐 ( 1 / 3 ) ) |
| 3 |
|
cos9thpiminplylem5.3 |
⊢ 𝐴 = ( 𝑍 + ( 1 / 𝑍 ) ) |
| 4 |
|
ax-icn |
⊢ i ∈ ℂ |
| 5 |
|
2cn |
⊢ 2 ∈ ℂ |
| 6 |
|
picn |
⊢ π ∈ ℂ |
| 7 |
5 6
|
mulcli |
⊢ ( 2 · π ) ∈ ℂ |
| 8 |
4 7
|
mulcli |
⊢ ( i · ( 2 · π ) ) ∈ ℂ |
| 9 |
|
3cn |
⊢ 3 ∈ ℂ |
| 10 |
|
3ne0 |
⊢ 3 ≠ 0 |
| 11 |
8 9 10
|
divcli |
⊢ ( ( i · ( 2 · π ) ) / 3 ) ∈ ℂ |
| 12 |
|
efcl |
⊢ ( ( ( i · ( 2 · π ) ) / 3 ) ∈ ℂ → ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ∈ ℂ ) |
| 13 |
11 12
|
ax-mp |
⊢ ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ∈ ℂ |
| 14 |
1 13
|
eqeltri |
⊢ 𝑂 ∈ ℂ |
| 15 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 16 |
15 9 10
|
divcli |
⊢ ( 1 / 3 ) ∈ ℂ |
| 17 |
|
cxpcl |
⊢ ( ( 𝑂 ∈ ℂ ∧ ( 1 / 3 ) ∈ ℂ ) → ( 𝑂 ↑𝑐 ( 1 / 3 ) ) ∈ ℂ ) |
| 18 |
14 16 17
|
mp2an |
⊢ ( 𝑂 ↑𝑐 ( 1 / 3 ) ) ∈ ℂ |
| 19 |
2 18
|
eqeltri |
⊢ 𝑍 ∈ ℂ |
| 20 |
|
efne0 |
⊢ ( ( ( i · ( 2 · π ) ) / 3 ) ∈ ℂ → ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ≠ 0 ) |
| 21 |
11 20
|
ax-mp |
⊢ ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ≠ 0 |
| 22 |
1 21
|
eqnetri |
⊢ 𝑂 ≠ 0 |
| 23 |
|
cxpne0 |
⊢ ( ( 𝑂 ∈ ℂ ∧ 𝑂 ≠ 0 ∧ ( 1 / 3 ) ∈ ℂ ) → ( 𝑂 ↑𝑐 ( 1 / 3 ) ) ≠ 0 ) |
| 24 |
14 22 16 23
|
mp3an |
⊢ ( 𝑂 ↑𝑐 ( 1 / 3 ) ) ≠ 0 |
| 25 |
2 24
|
eqnetri |
⊢ 𝑍 ≠ 0 |
| 26 |
15 19 25
|
divcli |
⊢ ( 1 / 𝑍 ) ∈ ℂ |
| 27 |
19 26
|
addcli |
⊢ ( 𝑍 + ( 1 / 𝑍 ) ) ∈ ℂ |
| 28 |
3 27
|
eqeltri |
⊢ 𝐴 ∈ ℂ |
| 29 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 30 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝐴 ↑ 3 ) ∈ ℂ ) |
| 31 |
28 29 30
|
mp2an |
⊢ ( 𝐴 ↑ 3 ) ∈ ℂ |
| 32 |
9
|
negcli |
⊢ - 3 ∈ ℂ |
| 33 |
32 28
|
mulcli |
⊢ ( - 3 · 𝐴 ) ∈ ℂ |
| 34 |
33 15
|
addcli |
⊢ ( ( - 3 · 𝐴 ) + 1 ) ∈ ℂ |
| 35 |
31 34
|
pm3.2i |
⊢ ( ( 𝐴 ↑ 3 ) ∈ ℂ ∧ ( ( - 3 · 𝐴 ) + 1 ) ∈ ℂ ) |
| 36 |
|
binom3 |
⊢ ( ( 𝑍 ∈ ℂ ∧ ( 1 / 𝑍 ) ∈ ℂ ) → ( ( 𝑍 + ( 1 / 𝑍 ) ) ↑ 3 ) = ( ( ( 𝑍 ↑ 3 ) + ( 3 · ( ( 𝑍 ↑ 2 ) · ( 1 / 𝑍 ) ) ) ) + ( ( 3 · ( 𝑍 · ( ( 1 / 𝑍 ) ↑ 2 ) ) ) + ( ( 1 / 𝑍 ) ↑ 3 ) ) ) ) |
| 37 |
19 26 36
|
mp2an |
⊢ ( ( 𝑍 + ( 1 / 𝑍 ) ) ↑ 3 ) = ( ( ( 𝑍 ↑ 3 ) + ( 3 · ( ( 𝑍 ↑ 2 ) · ( 1 / 𝑍 ) ) ) ) + ( ( 3 · ( 𝑍 · ( ( 1 / 𝑍 ) ↑ 2 ) ) ) + ( ( 1 / 𝑍 ) ↑ 3 ) ) ) |
| 38 |
3
|
oveq1i |
⊢ ( 𝐴 ↑ 3 ) = ( ( 𝑍 + ( 1 / 𝑍 ) ) ↑ 3 ) |
| 39 |
33 15
|
negdii |
⊢ - ( ( - 3 · 𝐴 ) + 1 ) = ( - ( - 3 · 𝐴 ) + - 1 ) |
| 40 |
32 28
|
mulneg1i |
⊢ ( - - 3 · 𝐴 ) = - ( - 3 · 𝐴 ) |
| 41 |
40
|
oveq1i |
⊢ ( ( - - 3 · 𝐴 ) + - 1 ) = ( - ( - 3 · 𝐴 ) + - 1 ) |
| 42 |
9
|
negnegi |
⊢ - - 3 = 3 |
| 43 |
42
|
oveq1i |
⊢ ( - - 3 · 𝐴 ) = ( 3 · 𝐴 ) |
| 44 |
43
|
oveq1i |
⊢ ( ( - - 3 · 𝐴 ) + - 1 ) = ( ( 3 · 𝐴 ) + - 1 ) |
| 45 |
41 44
|
eqtr3i |
⊢ ( - ( - 3 · 𝐴 ) + - 1 ) = ( ( 3 · 𝐴 ) + - 1 ) |
| 46 |
|
6nn0 |
⊢ 6 ∈ ℕ0 |
| 47 |
|
expcl |
⊢ ( ( 𝑍 ∈ ℂ ∧ 6 ∈ ℕ0 ) → ( 𝑍 ↑ 6 ) ∈ ℂ ) |
| 48 |
19 46 47
|
mp2an |
⊢ ( 𝑍 ↑ 6 ) ∈ ℂ |
| 49 |
|
expcl |
⊢ ( ( 𝑍 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝑍 ↑ 3 ) ∈ ℂ ) |
| 50 |
19 29 49
|
mp2an |
⊢ ( 𝑍 ↑ 3 ) ∈ ℂ |
| 51 |
48 50
|
addcomi |
⊢ ( ( 𝑍 ↑ 6 ) + ( 𝑍 ↑ 3 ) ) = ( ( 𝑍 ↑ 3 ) + ( 𝑍 ↑ 6 ) ) |
| 52 |
1 2
|
cos9thpiminplylem4 |
⊢ ( ( 𝑍 ↑ 6 ) + ( 𝑍 ↑ 3 ) ) = - 1 |
| 53 |
13
|
sqcli |
⊢ ( ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ↑ 2 ) ∈ ℂ |
| 54 |
13 21
|
pm3.2i |
⊢ ( ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ∈ ℂ ∧ ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ≠ 0 ) |
| 55 |
15 53 54
|
3pm3.2i |
⊢ ( 1 ∈ ℂ ∧ ( ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ↑ 2 ) ∈ ℂ ∧ ( ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ∈ ℂ ∧ ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ≠ 0 ) ) |
| 56 |
5 15 11
|
adddiri |
⊢ ( ( 2 + 1 ) · ( ( i · ( 2 · π ) ) / 3 ) ) = ( ( 2 · ( ( i · ( 2 · π ) ) / 3 ) ) + ( 1 · ( ( i · ( 2 · π ) ) / 3 ) ) ) |
| 57 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
| 58 |
57
|
oveq1i |
⊢ ( ( 2 + 1 ) · ( ( i · ( 2 · π ) ) / 3 ) ) = ( 3 · ( ( i · ( 2 · π ) ) / 3 ) ) |
| 59 |
8 9 10
|
divcan2i |
⊢ ( 3 · ( ( i · ( 2 · π ) ) / 3 ) ) = ( i · ( 2 · π ) ) |
| 60 |
58 59
|
eqtri |
⊢ ( ( 2 + 1 ) · ( ( i · ( 2 · π ) ) / 3 ) ) = ( i · ( 2 · π ) ) |
| 61 |
11
|
mullidi |
⊢ ( 1 · ( ( i · ( 2 · π ) ) / 3 ) ) = ( ( i · ( 2 · π ) ) / 3 ) |
| 62 |
61
|
oveq2i |
⊢ ( ( 2 · ( ( i · ( 2 · π ) ) / 3 ) ) + ( 1 · ( ( i · ( 2 · π ) ) / 3 ) ) ) = ( ( 2 · ( ( i · ( 2 · π ) ) / 3 ) ) + ( ( i · ( 2 · π ) ) / 3 ) ) |
| 63 |
56 60 62
|
3eqtr3ri |
⊢ ( ( 2 · ( ( i · ( 2 · π ) ) / 3 ) ) + ( ( i · ( 2 · π ) ) / 3 ) ) = ( i · ( 2 · π ) ) |
| 64 |
63
|
fveq2i |
⊢ ( exp ‘ ( ( 2 · ( ( i · ( 2 · π ) ) / 3 ) ) + ( ( i · ( 2 · π ) ) / 3 ) ) ) = ( exp ‘ ( i · ( 2 · π ) ) ) |
| 65 |
5 11
|
mulcli |
⊢ ( 2 · ( ( i · ( 2 · π ) ) / 3 ) ) ∈ ℂ |
| 66 |
|
efadd |
⊢ ( ( ( 2 · ( ( i · ( 2 · π ) ) / 3 ) ) ∈ ℂ ∧ ( ( i · ( 2 · π ) ) / 3 ) ∈ ℂ ) → ( exp ‘ ( ( 2 · ( ( i · ( 2 · π ) ) / 3 ) ) + ( ( i · ( 2 · π ) ) / 3 ) ) ) = ( ( exp ‘ ( 2 · ( ( i · ( 2 · π ) ) / 3 ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ) ) |
| 67 |
65 11 66
|
mp2an |
⊢ ( exp ‘ ( ( 2 · ( ( i · ( 2 · π ) ) / 3 ) ) + ( ( i · ( 2 · π ) ) / 3 ) ) ) = ( ( exp ‘ ( 2 · ( ( i · ( 2 · π ) ) / 3 ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ) |
| 68 |
64 67
|
eqtr3i |
⊢ ( exp ‘ ( i · ( 2 · π ) ) ) = ( ( exp ‘ ( 2 · ( ( i · ( 2 · π ) ) / 3 ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ) |
| 69 |
|
ef2pi |
⊢ ( exp ‘ ( i · ( 2 · π ) ) ) = 1 |
| 70 |
|
2z |
⊢ 2 ∈ ℤ |
| 71 |
|
efexp |
⊢ ( ( ( ( i · ( 2 · π ) ) / 3 ) ∈ ℂ ∧ 2 ∈ ℤ ) → ( exp ‘ ( 2 · ( ( i · ( 2 · π ) ) / 3 ) ) ) = ( ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ↑ 2 ) ) |
| 72 |
11 70 71
|
mp2an |
⊢ ( exp ‘ ( 2 · ( ( i · ( 2 · π ) ) / 3 ) ) ) = ( ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ↑ 2 ) |
| 73 |
72
|
oveq1i |
⊢ ( ( exp ‘ ( 2 · ( ( i · ( 2 · π ) ) / 3 ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ) = ( ( ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ↑ 2 ) · ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ) |
| 74 |
68 69 73
|
3eqtr3i |
⊢ 1 = ( ( ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ↑ 2 ) · ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ) |
| 75 |
|
divmul3 |
⊢ ( ( 1 ∈ ℂ ∧ ( ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ↑ 2 ) ∈ ℂ ∧ ( ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ∈ ℂ ∧ ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ≠ 0 ) ) → ( ( 1 / ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ) = ( ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ↑ 2 ) ↔ 1 = ( ( ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ↑ 2 ) · ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ) ) ) |
| 76 |
75
|
biimpar |
⊢ ( ( ( 1 ∈ ℂ ∧ ( ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ↑ 2 ) ∈ ℂ ∧ ( ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ∈ ℂ ∧ ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ≠ 0 ) ) ∧ 1 = ( ( ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ↑ 2 ) · ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ) ) → ( 1 / ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ) = ( ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ↑ 2 ) ) |
| 77 |
55 74 76
|
mp2an |
⊢ ( 1 / ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ) = ( ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ↑ 2 ) |
| 78 |
1
|
oveq2i |
⊢ ( 1 / 𝑂 ) = ( 1 / ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ) |
| 79 |
1
|
oveq1i |
⊢ ( 𝑂 ↑ 2 ) = ( ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ↑ 2 ) |
| 80 |
77 78 79
|
3eqtr4ri |
⊢ ( 𝑂 ↑ 2 ) = ( 1 / 𝑂 ) |
| 81 |
2
|
oveq1i |
⊢ ( 𝑍 ↑ 3 ) = ( ( 𝑂 ↑𝑐 ( 1 / 3 ) ) ↑ 3 ) |
| 82 |
|
3nn |
⊢ 3 ∈ ℕ |
| 83 |
|
cxproot |
⊢ ( ( 𝑂 ∈ ℂ ∧ 3 ∈ ℕ ) → ( ( 𝑂 ↑𝑐 ( 1 / 3 ) ) ↑ 3 ) = 𝑂 ) |
| 84 |
14 82 83
|
mp2an |
⊢ ( ( 𝑂 ↑𝑐 ( 1 / 3 ) ) ↑ 3 ) = 𝑂 |
| 85 |
81 84
|
eqtr2i |
⊢ 𝑂 = ( 𝑍 ↑ 3 ) |
| 86 |
85
|
oveq1i |
⊢ ( 𝑂 ↑ 2 ) = ( ( 𝑍 ↑ 3 ) ↑ 2 ) |
| 87 |
85
|
oveq2i |
⊢ ( 1 / 𝑂 ) = ( 1 / ( 𝑍 ↑ 3 ) ) |
| 88 |
80 86 87
|
3eqtr3i |
⊢ ( ( 𝑍 ↑ 3 ) ↑ 2 ) = ( 1 / ( 𝑍 ↑ 3 ) ) |
| 89 |
|
3t2e6 |
⊢ ( 3 · 2 ) = 6 |
| 90 |
89
|
oveq2i |
⊢ ( 𝑍 ↑ ( 3 · 2 ) ) = ( 𝑍 ↑ 6 ) |
| 91 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 92 |
|
expmul |
⊢ ( ( 𝑍 ∈ ℂ ∧ 3 ∈ ℕ0 ∧ 2 ∈ ℕ0 ) → ( 𝑍 ↑ ( 3 · 2 ) ) = ( ( 𝑍 ↑ 3 ) ↑ 2 ) ) |
| 93 |
19 29 91 92
|
mp3an |
⊢ ( 𝑍 ↑ ( 3 · 2 ) ) = ( ( 𝑍 ↑ 3 ) ↑ 2 ) |
| 94 |
90 93
|
eqtr3i |
⊢ ( 𝑍 ↑ 6 ) = ( ( 𝑍 ↑ 3 ) ↑ 2 ) |
| 95 |
|
3z |
⊢ 3 ∈ ℤ |
| 96 |
|
exprec |
⊢ ( ( 𝑍 ∈ ℂ ∧ 𝑍 ≠ 0 ∧ 3 ∈ ℤ ) → ( ( 1 / 𝑍 ) ↑ 3 ) = ( 1 / ( 𝑍 ↑ 3 ) ) ) |
| 97 |
19 25 95 96
|
mp3an |
⊢ ( ( 1 / 𝑍 ) ↑ 3 ) = ( 1 / ( 𝑍 ↑ 3 ) ) |
| 98 |
88 94 97
|
3eqtr4i |
⊢ ( 𝑍 ↑ 6 ) = ( ( 1 / 𝑍 ) ↑ 3 ) |
| 99 |
98
|
oveq2i |
⊢ ( ( 𝑍 ↑ 3 ) + ( 𝑍 ↑ 6 ) ) = ( ( 𝑍 ↑ 3 ) + ( ( 1 / 𝑍 ) ↑ 3 ) ) |
| 100 |
51 52 99
|
3eqtr3i |
⊢ - 1 = ( ( 𝑍 ↑ 3 ) + ( ( 1 / 𝑍 ) ↑ 3 ) ) |
| 101 |
|
sqdivid |
⊢ ( ( 𝑍 ∈ ℂ ∧ 𝑍 ≠ 0 ) → ( ( 𝑍 ↑ 2 ) / 𝑍 ) = 𝑍 ) |
| 102 |
19 25 101
|
mp2an |
⊢ ( ( 𝑍 ↑ 2 ) / 𝑍 ) = 𝑍 |
| 103 |
19
|
sqcli |
⊢ ( 𝑍 ↑ 2 ) ∈ ℂ |
| 104 |
103 19 25
|
divreci |
⊢ ( ( 𝑍 ↑ 2 ) / 𝑍 ) = ( ( 𝑍 ↑ 2 ) · ( 1 / 𝑍 ) ) |
| 105 |
102 104
|
eqtr3i |
⊢ 𝑍 = ( ( 𝑍 ↑ 2 ) · ( 1 / 𝑍 ) ) |
| 106 |
15 5
|
negsubi |
⊢ ( 1 + - 2 ) = ( 1 − 2 ) |
| 107 |
5 15
|
negsubdi2i |
⊢ - ( 2 − 1 ) = ( 1 − 2 ) |
| 108 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
| 109 |
108
|
negeqi |
⊢ - ( 2 − 1 ) = - 1 |
| 110 |
106 107 109
|
3eqtr2i |
⊢ ( 1 + - 2 ) = - 1 |
| 111 |
110
|
oveq2i |
⊢ ( 𝑍 ↑ ( 1 + - 2 ) ) = ( 𝑍 ↑ - 1 ) |
| 112 |
|
1z |
⊢ 1 ∈ ℤ |
| 113 |
91
|
nn0negzi |
⊢ - 2 ∈ ℤ |
| 114 |
|
expaddz |
⊢ ( ( ( 𝑍 ∈ ℂ ∧ 𝑍 ≠ 0 ) ∧ ( 1 ∈ ℤ ∧ - 2 ∈ ℤ ) ) → ( 𝑍 ↑ ( 1 + - 2 ) ) = ( ( 𝑍 ↑ 1 ) · ( 𝑍 ↑ - 2 ) ) ) |
| 115 |
19 25 112 113 114
|
mp4an |
⊢ ( 𝑍 ↑ ( 1 + - 2 ) ) = ( ( 𝑍 ↑ 1 ) · ( 𝑍 ↑ - 2 ) ) |
| 116 |
|
expn1 |
⊢ ( 𝑍 ∈ ℂ → ( 𝑍 ↑ - 1 ) = ( 1 / 𝑍 ) ) |
| 117 |
19 116
|
ax-mp |
⊢ ( 𝑍 ↑ - 1 ) = ( 1 / 𝑍 ) |
| 118 |
111 115 117
|
3eqtr3i |
⊢ ( ( 𝑍 ↑ 1 ) · ( 𝑍 ↑ - 2 ) ) = ( 1 / 𝑍 ) |
| 119 |
|
exp1 |
⊢ ( 𝑍 ∈ ℂ → ( 𝑍 ↑ 1 ) = 𝑍 ) |
| 120 |
19 119
|
ax-mp |
⊢ ( 𝑍 ↑ 1 ) = 𝑍 |
| 121 |
|
expnegz |
⊢ ( ( 𝑍 ∈ ℂ ∧ 𝑍 ≠ 0 ∧ 2 ∈ ℤ ) → ( 𝑍 ↑ - 2 ) = ( 1 / ( 𝑍 ↑ 2 ) ) ) |
| 122 |
19 25 70 121
|
mp3an |
⊢ ( 𝑍 ↑ - 2 ) = ( 1 / ( 𝑍 ↑ 2 ) ) |
| 123 |
19 25
|
sqrecii |
⊢ ( ( 1 / 𝑍 ) ↑ 2 ) = ( 1 / ( 𝑍 ↑ 2 ) ) |
| 124 |
122 123
|
eqtr4i |
⊢ ( 𝑍 ↑ - 2 ) = ( ( 1 / 𝑍 ) ↑ 2 ) |
| 125 |
120 124
|
oveq12i |
⊢ ( ( 𝑍 ↑ 1 ) · ( 𝑍 ↑ - 2 ) ) = ( 𝑍 · ( ( 1 / 𝑍 ) ↑ 2 ) ) |
| 126 |
118 125
|
eqtr3i |
⊢ ( 1 / 𝑍 ) = ( 𝑍 · ( ( 1 / 𝑍 ) ↑ 2 ) ) |
| 127 |
105 126
|
oveq12i |
⊢ ( 𝑍 + ( 1 / 𝑍 ) ) = ( ( ( 𝑍 ↑ 2 ) · ( 1 / 𝑍 ) ) + ( 𝑍 · ( ( 1 / 𝑍 ) ↑ 2 ) ) ) |
| 128 |
3 127
|
eqtri |
⊢ 𝐴 = ( ( ( 𝑍 ↑ 2 ) · ( 1 / 𝑍 ) ) + ( 𝑍 · ( ( 1 / 𝑍 ) ↑ 2 ) ) ) |
| 129 |
128
|
oveq2i |
⊢ ( 3 · 𝐴 ) = ( 3 · ( ( ( 𝑍 ↑ 2 ) · ( 1 / 𝑍 ) ) + ( 𝑍 · ( ( 1 / 𝑍 ) ↑ 2 ) ) ) ) |
| 130 |
103 26
|
mulcli |
⊢ ( ( 𝑍 ↑ 2 ) · ( 1 / 𝑍 ) ) ∈ ℂ |
| 131 |
26
|
sqcli |
⊢ ( ( 1 / 𝑍 ) ↑ 2 ) ∈ ℂ |
| 132 |
19 131
|
mulcli |
⊢ ( 𝑍 · ( ( 1 / 𝑍 ) ↑ 2 ) ) ∈ ℂ |
| 133 |
9 130 132
|
adddii |
⊢ ( 3 · ( ( ( 𝑍 ↑ 2 ) · ( 1 / 𝑍 ) ) + ( 𝑍 · ( ( 1 / 𝑍 ) ↑ 2 ) ) ) ) = ( ( 3 · ( ( 𝑍 ↑ 2 ) · ( 1 / 𝑍 ) ) ) + ( 3 · ( 𝑍 · ( ( 1 / 𝑍 ) ↑ 2 ) ) ) ) |
| 134 |
129 133
|
eqtri |
⊢ ( 3 · 𝐴 ) = ( ( 3 · ( ( 𝑍 ↑ 2 ) · ( 1 / 𝑍 ) ) ) + ( 3 · ( 𝑍 · ( ( 1 / 𝑍 ) ↑ 2 ) ) ) ) |
| 135 |
100 134
|
oveq12i |
⊢ ( - 1 + ( 3 · 𝐴 ) ) = ( ( ( 𝑍 ↑ 3 ) + ( ( 1 / 𝑍 ) ↑ 3 ) ) + ( ( 3 · ( ( 𝑍 ↑ 2 ) · ( 1 / 𝑍 ) ) ) + ( 3 · ( 𝑍 · ( ( 1 / 𝑍 ) ↑ 2 ) ) ) ) ) |
| 136 |
15
|
negcli |
⊢ - 1 ∈ ℂ |
| 137 |
9 28
|
mulcli |
⊢ ( 3 · 𝐴 ) ∈ ℂ |
| 138 |
136 137
|
addcomi |
⊢ ( - 1 + ( 3 · 𝐴 ) ) = ( ( 3 · 𝐴 ) + - 1 ) |
| 139 |
|
expcl |
⊢ ( ( ( 1 / 𝑍 ) ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( ( 1 / 𝑍 ) ↑ 3 ) ∈ ℂ ) |
| 140 |
26 29 139
|
mp2an |
⊢ ( ( 1 / 𝑍 ) ↑ 3 ) ∈ ℂ |
| 141 |
9 130
|
mulcli |
⊢ ( 3 · ( ( 𝑍 ↑ 2 ) · ( 1 / 𝑍 ) ) ) ∈ ℂ |
| 142 |
9 132
|
mulcli |
⊢ ( 3 · ( 𝑍 · ( ( 1 / 𝑍 ) ↑ 2 ) ) ) ∈ ℂ |
| 143 |
50 140 141 142
|
add42i |
⊢ ( ( ( 𝑍 ↑ 3 ) + ( ( 1 / 𝑍 ) ↑ 3 ) ) + ( ( 3 · ( ( 𝑍 ↑ 2 ) · ( 1 / 𝑍 ) ) ) + ( 3 · ( 𝑍 · ( ( 1 / 𝑍 ) ↑ 2 ) ) ) ) ) = ( ( ( 𝑍 ↑ 3 ) + ( 3 · ( ( 𝑍 ↑ 2 ) · ( 1 / 𝑍 ) ) ) ) + ( ( 3 · ( 𝑍 · ( ( 1 / 𝑍 ) ↑ 2 ) ) ) + ( ( 1 / 𝑍 ) ↑ 3 ) ) ) |
| 144 |
135 138 143
|
3eqtr3i |
⊢ ( ( 3 · 𝐴 ) + - 1 ) = ( ( ( 𝑍 ↑ 3 ) + ( 3 · ( ( 𝑍 ↑ 2 ) · ( 1 / 𝑍 ) ) ) ) + ( ( 3 · ( 𝑍 · ( ( 1 / 𝑍 ) ↑ 2 ) ) ) + ( ( 1 / 𝑍 ) ↑ 3 ) ) ) |
| 145 |
39 45 144
|
3eqtri |
⊢ - ( ( - 3 · 𝐴 ) + 1 ) = ( ( ( 𝑍 ↑ 3 ) + ( 3 · ( ( 𝑍 ↑ 2 ) · ( 1 / 𝑍 ) ) ) ) + ( ( 3 · ( 𝑍 · ( ( 1 / 𝑍 ) ↑ 2 ) ) ) + ( ( 1 / 𝑍 ) ↑ 3 ) ) ) |
| 146 |
37 38 145
|
3eqtr4i |
⊢ ( 𝐴 ↑ 3 ) = - ( ( - 3 · 𝐴 ) + 1 ) |
| 147 |
|
addeq0 |
⊢ ( ( ( 𝐴 ↑ 3 ) ∈ ℂ ∧ ( ( - 3 · 𝐴 ) + 1 ) ∈ ℂ ) → ( ( ( 𝐴 ↑ 3 ) + ( ( - 3 · 𝐴 ) + 1 ) ) = 0 ↔ ( 𝐴 ↑ 3 ) = - ( ( - 3 · 𝐴 ) + 1 ) ) ) |
| 148 |
147
|
biimpar |
⊢ ( ( ( ( 𝐴 ↑ 3 ) ∈ ℂ ∧ ( ( - 3 · 𝐴 ) + 1 ) ∈ ℂ ) ∧ ( 𝐴 ↑ 3 ) = - ( ( - 3 · 𝐴 ) + 1 ) ) → ( ( 𝐴 ↑ 3 ) + ( ( - 3 · 𝐴 ) + 1 ) ) = 0 ) |
| 149 |
35 146 148
|
mp2an |
⊢ ( ( 𝐴 ↑ 3 ) + ( ( - 3 · 𝐴 ) + 1 ) ) = 0 |