| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cos9thpiminplylem3.1 |
⊢ 𝑂 = ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) |
| 2 |
|
cos9thpiminplylem4.2 |
⊢ 𝑍 = ( 𝑂 ↑𝑐 ( 1 / 3 ) ) |
| 3 |
|
ax-icn |
⊢ i ∈ ℂ |
| 4 |
|
2cn |
⊢ 2 ∈ ℂ |
| 5 |
|
picn |
⊢ π ∈ ℂ |
| 6 |
4 5
|
mulcli |
⊢ ( 2 · π ) ∈ ℂ |
| 7 |
3 6
|
mulcli |
⊢ ( i · ( 2 · π ) ) ∈ ℂ |
| 8 |
|
3cn |
⊢ 3 ∈ ℂ |
| 9 |
|
3ne0 |
⊢ 3 ≠ 0 |
| 10 |
7 8 9
|
divcli |
⊢ ( ( i · ( 2 · π ) ) / 3 ) ∈ ℂ |
| 11 |
|
efcl |
⊢ ( ( ( i · ( 2 · π ) ) / 3 ) ∈ ℂ → ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ∈ ℂ ) |
| 12 |
10 11
|
ax-mp |
⊢ ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ∈ ℂ |
| 13 |
1 12
|
eqeltri |
⊢ 𝑂 ∈ ℂ |
| 14 |
8 9
|
reccli |
⊢ ( 1 / 3 ) ∈ ℂ |
| 15 |
|
cxpcl |
⊢ ( ( 𝑂 ∈ ℂ ∧ ( 1 / 3 ) ∈ ℂ ) → ( 𝑂 ↑𝑐 ( 1 / 3 ) ) ∈ ℂ ) |
| 16 |
13 14 15
|
mp2an |
⊢ ( 𝑂 ↑𝑐 ( 1 / 3 ) ) ∈ ℂ |
| 17 |
2 16
|
eqeltri |
⊢ 𝑍 ∈ ℂ |
| 18 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 19 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 20 |
|
expmul |
⊢ ( ( 𝑍 ∈ ℂ ∧ 3 ∈ ℕ0 ∧ 2 ∈ ℕ0 ) → ( 𝑍 ↑ ( 3 · 2 ) ) = ( ( 𝑍 ↑ 3 ) ↑ 2 ) ) |
| 21 |
17 18 19 20
|
mp3an |
⊢ ( 𝑍 ↑ ( 3 · 2 ) ) = ( ( 𝑍 ↑ 3 ) ↑ 2 ) |
| 22 |
|
3t2e6 |
⊢ ( 3 · 2 ) = 6 |
| 23 |
22
|
oveq2i |
⊢ ( 𝑍 ↑ ( 3 · 2 ) ) = ( 𝑍 ↑ 6 ) |
| 24 |
2
|
oveq1i |
⊢ ( 𝑍 ↑ 3 ) = ( ( 𝑂 ↑𝑐 ( 1 / 3 ) ) ↑ 3 ) |
| 25 |
|
cxpmul2 |
⊢ ( ( 𝑂 ∈ ℂ ∧ ( 1 / 3 ) ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝑂 ↑𝑐 ( ( 1 / 3 ) · 3 ) ) = ( ( 𝑂 ↑𝑐 ( 1 / 3 ) ) ↑ 3 ) ) |
| 26 |
13 14 18 25
|
mp3an |
⊢ ( 𝑂 ↑𝑐 ( ( 1 / 3 ) · 3 ) ) = ( ( 𝑂 ↑𝑐 ( 1 / 3 ) ) ↑ 3 ) |
| 27 |
24 26
|
eqtr4i |
⊢ ( 𝑍 ↑ 3 ) = ( 𝑂 ↑𝑐 ( ( 1 / 3 ) · 3 ) ) |
| 28 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 29 |
28 8 9
|
divcan1i |
⊢ ( ( 1 / 3 ) · 3 ) = 1 |
| 30 |
29
|
oveq2i |
⊢ ( 𝑂 ↑𝑐 ( ( 1 / 3 ) · 3 ) ) = ( 𝑂 ↑𝑐 1 ) |
| 31 |
|
cxp1 |
⊢ ( 𝑂 ∈ ℂ → ( 𝑂 ↑𝑐 1 ) = 𝑂 ) |
| 32 |
13 31
|
ax-mp |
⊢ ( 𝑂 ↑𝑐 1 ) = 𝑂 |
| 33 |
27 30 32
|
3eqtri |
⊢ ( 𝑍 ↑ 3 ) = 𝑂 |
| 34 |
33
|
oveq1i |
⊢ ( ( 𝑍 ↑ 3 ) ↑ 2 ) = ( 𝑂 ↑ 2 ) |
| 35 |
21 23 34
|
3eqtr3i |
⊢ ( 𝑍 ↑ 6 ) = ( 𝑂 ↑ 2 ) |
| 36 |
35 33
|
oveq12i |
⊢ ( ( 𝑍 ↑ 6 ) + ( 𝑍 ↑ 3 ) ) = ( ( 𝑂 ↑ 2 ) + 𝑂 ) |
| 37 |
13
|
sqcli |
⊢ ( 𝑂 ↑ 2 ) ∈ ℂ |
| 38 |
37 13
|
addcli |
⊢ ( ( 𝑂 ↑ 2 ) + 𝑂 ) ∈ ℂ |
| 39 |
38 28
|
pm3.2i |
⊢ ( ( ( 𝑂 ↑ 2 ) + 𝑂 ) ∈ ℂ ∧ 1 ∈ ℂ ) |
| 40 |
37 13 28
|
addassi |
⊢ ( ( ( 𝑂 ↑ 2 ) + 𝑂 ) + 1 ) = ( ( 𝑂 ↑ 2 ) + ( 𝑂 + 1 ) ) |
| 41 |
1
|
cos9thpiminplylem3 |
⊢ ( ( 𝑂 ↑ 2 ) + ( 𝑂 + 1 ) ) = 0 |
| 42 |
40 41
|
eqtri |
⊢ ( ( ( 𝑂 ↑ 2 ) + 𝑂 ) + 1 ) = 0 |
| 43 |
|
addeq0 |
⊢ ( ( ( ( 𝑂 ↑ 2 ) + 𝑂 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( ( 𝑂 ↑ 2 ) + 𝑂 ) + 1 ) = 0 ↔ ( ( 𝑂 ↑ 2 ) + 𝑂 ) = - 1 ) ) |
| 44 |
43
|
biimpa |
⊢ ( ( ( ( ( 𝑂 ↑ 2 ) + 𝑂 ) ∈ ℂ ∧ 1 ∈ ℂ ) ∧ ( ( ( 𝑂 ↑ 2 ) + 𝑂 ) + 1 ) = 0 ) → ( ( 𝑂 ↑ 2 ) + 𝑂 ) = - 1 ) |
| 45 |
39 42 44
|
mp2an |
⊢ ( ( 𝑂 ↑ 2 ) + 𝑂 ) = - 1 |
| 46 |
36 45
|
eqtri |
⊢ ( ( 𝑍 ↑ 6 ) + ( 𝑍 ↑ 3 ) ) = - 1 |