Metamath Proof Explorer


Theorem cos9thpiminplylem4

Description: Lemma for cos9thpiminply . (Contributed by Thierry Arnoux, 14-Nov-2025)

Ref Expression
Hypotheses cos9thpiminplylem3.1 𝑂 = ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) )
cos9thpiminplylem4.2 𝑍 = ( 𝑂𝑐 ( 1 / 3 ) )
Assertion cos9thpiminplylem4 ( ( 𝑍 ↑ 6 ) + ( 𝑍 ↑ 3 ) ) = - 1

Proof

Step Hyp Ref Expression
1 cos9thpiminplylem3.1 𝑂 = ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) )
2 cos9thpiminplylem4.2 𝑍 = ( 𝑂𝑐 ( 1 / 3 ) )
3 ax-icn i ∈ ℂ
4 2cn 2 ∈ ℂ
5 picn π ∈ ℂ
6 4 5 mulcli ( 2 · π ) ∈ ℂ
7 3 6 mulcli ( i · ( 2 · π ) ) ∈ ℂ
8 3cn 3 ∈ ℂ
9 3ne0 3 ≠ 0
10 7 8 9 divcli ( ( i · ( 2 · π ) ) / 3 ) ∈ ℂ
11 efcl ( ( ( i · ( 2 · π ) ) / 3 ) ∈ ℂ → ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ∈ ℂ )
12 10 11 ax-mp ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ∈ ℂ
13 1 12 eqeltri 𝑂 ∈ ℂ
14 8 9 reccli ( 1 / 3 ) ∈ ℂ
15 cxpcl ( ( 𝑂 ∈ ℂ ∧ ( 1 / 3 ) ∈ ℂ ) → ( 𝑂𝑐 ( 1 / 3 ) ) ∈ ℂ )
16 13 14 15 mp2an ( 𝑂𝑐 ( 1 / 3 ) ) ∈ ℂ
17 2 16 eqeltri 𝑍 ∈ ℂ
18 3nn0 3 ∈ ℕ0
19 2nn0 2 ∈ ℕ0
20 expmul ( ( 𝑍 ∈ ℂ ∧ 3 ∈ ℕ0 ∧ 2 ∈ ℕ0 ) → ( 𝑍 ↑ ( 3 · 2 ) ) = ( ( 𝑍 ↑ 3 ) ↑ 2 ) )
21 17 18 19 20 mp3an ( 𝑍 ↑ ( 3 · 2 ) ) = ( ( 𝑍 ↑ 3 ) ↑ 2 )
22 3t2e6 ( 3 · 2 ) = 6
23 22 oveq2i ( 𝑍 ↑ ( 3 · 2 ) ) = ( 𝑍 ↑ 6 )
24 2 oveq1i ( 𝑍 ↑ 3 ) = ( ( 𝑂𝑐 ( 1 / 3 ) ) ↑ 3 )
25 cxpmul2 ( ( 𝑂 ∈ ℂ ∧ ( 1 / 3 ) ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝑂𝑐 ( ( 1 / 3 ) · 3 ) ) = ( ( 𝑂𝑐 ( 1 / 3 ) ) ↑ 3 ) )
26 13 14 18 25 mp3an ( 𝑂𝑐 ( ( 1 / 3 ) · 3 ) ) = ( ( 𝑂𝑐 ( 1 / 3 ) ) ↑ 3 )
27 24 26 eqtr4i ( 𝑍 ↑ 3 ) = ( 𝑂𝑐 ( ( 1 / 3 ) · 3 ) )
28 ax-1cn 1 ∈ ℂ
29 28 8 9 divcan1i ( ( 1 / 3 ) · 3 ) = 1
30 29 oveq2i ( 𝑂𝑐 ( ( 1 / 3 ) · 3 ) ) = ( 𝑂𝑐 1 )
31 cxp1 ( 𝑂 ∈ ℂ → ( 𝑂𝑐 1 ) = 𝑂 )
32 13 31 ax-mp ( 𝑂𝑐 1 ) = 𝑂
33 27 30 32 3eqtri ( 𝑍 ↑ 3 ) = 𝑂
34 33 oveq1i ( ( 𝑍 ↑ 3 ) ↑ 2 ) = ( 𝑂 ↑ 2 )
35 21 23 34 3eqtr3i ( 𝑍 ↑ 6 ) = ( 𝑂 ↑ 2 )
36 35 33 oveq12i ( ( 𝑍 ↑ 6 ) + ( 𝑍 ↑ 3 ) ) = ( ( 𝑂 ↑ 2 ) + 𝑂 )
37 13 sqcli ( 𝑂 ↑ 2 ) ∈ ℂ
38 37 13 addcli ( ( 𝑂 ↑ 2 ) + 𝑂 ) ∈ ℂ
39 38 28 pm3.2i ( ( ( 𝑂 ↑ 2 ) + 𝑂 ) ∈ ℂ ∧ 1 ∈ ℂ )
40 37 13 28 addassi ( ( ( 𝑂 ↑ 2 ) + 𝑂 ) + 1 ) = ( ( 𝑂 ↑ 2 ) + ( 𝑂 + 1 ) )
41 1 cos9thpiminplylem3 ( ( 𝑂 ↑ 2 ) + ( 𝑂 + 1 ) ) = 0
42 40 41 eqtri ( ( ( 𝑂 ↑ 2 ) + 𝑂 ) + 1 ) = 0
43 addeq0 ( ( ( ( 𝑂 ↑ 2 ) + 𝑂 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( ( 𝑂 ↑ 2 ) + 𝑂 ) + 1 ) = 0 ↔ ( ( 𝑂 ↑ 2 ) + 𝑂 ) = - 1 ) )
44 43 biimpa ( ( ( ( ( 𝑂 ↑ 2 ) + 𝑂 ) ∈ ℂ ∧ 1 ∈ ℂ ) ∧ ( ( ( 𝑂 ↑ 2 ) + 𝑂 ) + 1 ) = 0 ) → ( ( 𝑂 ↑ 2 ) + 𝑂 ) = - 1 )
45 39 42 44 mp2an ( ( 𝑂 ↑ 2 ) + 𝑂 ) = - 1
46 36 45 eqtri ( ( 𝑍 ↑ 6 ) + ( 𝑍 ↑ 3 ) ) = - 1