| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cos9thpiminplylem3.1 |
⊢ 𝑂 = ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) |
| 2 |
|
ax-icn |
⊢ i ∈ ℂ |
| 3 |
2
|
a1i |
⊢ ( ⊤ → i ∈ ℂ ) |
| 4 |
|
2cnd |
⊢ ( ⊤ → 2 ∈ ℂ ) |
| 5 |
|
picn |
⊢ π ∈ ℂ |
| 6 |
5
|
a1i |
⊢ ( ⊤ → π ∈ ℂ ) |
| 7 |
4 6
|
mulcld |
⊢ ( ⊤ → ( 2 · π ) ∈ ℂ ) |
| 8 |
3 7
|
mulcld |
⊢ ( ⊤ → ( i · ( 2 · π ) ) ∈ ℂ ) |
| 9 |
|
3cn |
⊢ 3 ∈ ℂ |
| 10 |
9
|
a1i |
⊢ ( ⊤ → 3 ∈ ℂ ) |
| 11 |
|
3ne0 |
⊢ 3 ≠ 0 |
| 12 |
11
|
a1i |
⊢ ( ⊤ → 3 ≠ 0 ) |
| 13 |
8 10 12
|
divcld |
⊢ ( ⊤ → ( ( i · ( 2 · π ) ) / 3 ) ∈ ℂ ) |
| 14 |
13
|
efcld |
⊢ ( ⊤ → ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ∈ ℂ ) |
| 15 |
1 14
|
eqeltrid |
⊢ ( ⊤ → 𝑂 ∈ ℂ ) |
| 16 |
15
|
sqcld |
⊢ ( ⊤ → ( 𝑂 ↑ 2 ) ∈ ℂ ) |
| 17 |
|
1cnd |
⊢ ( ⊤ → 1 ∈ ℂ ) |
| 18 |
15 17
|
addcld |
⊢ ( ⊤ → ( 𝑂 + 1 ) ∈ ℂ ) |
| 19 |
16 18
|
addcomd |
⊢ ( ⊤ → ( ( 𝑂 ↑ 2 ) + ( 𝑂 + 1 ) ) = ( ( 𝑂 + 1 ) + ( 𝑂 ↑ 2 ) ) ) |
| 20 |
15 17
|
addcomd |
⊢ ( ⊤ → ( 𝑂 + 1 ) = ( 1 + 𝑂 ) ) |
| 21 |
20
|
oveq1d |
⊢ ( ⊤ → ( ( 𝑂 + 1 ) + ( 𝑂 ↑ 2 ) ) = ( ( 1 + 𝑂 ) + ( 𝑂 ↑ 2 ) ) ) |
| 22 |
|
oveq2 |
⊢ ( 𝑛 = 0 → ( 𝑂 ↑ 𝑛 ) = ( 𝑂 ↑ 0 ) ) |
| 23 |
15
|
mptru |
⊢ 𝑂 ∈ ℂ |
| 24 |
23
|
a1i |
⊢ ( 𝑛 = 0 → 𝑂 ∈ ℂ ) |
| 25 |
24
|
exp0d |
⊢ ( 𝑛 = 0 → ( 𝑂 ↑ 0 ) = 1 ) |
| 26 |
22 25
|
eqtrd |
⊢ ( 𝑛 = 0 → ( 𝑂 ↑ 𝑛 ) = 1 ) |
| 27 |
|
oveq2 |
⊢ ( 𝑛 = 1 → ( 𝑂 ↑ 𝑛 ) = ( 𝑂 ↑ 1 ) ) |
| 28 |
23
|
a1i |
⊢ ( 𝑛 = 1 → 𝑂 ∈ ℂ ) |
| 29 |
28
|
exp1d |
⊢ ( 𝑛 = 1 → ( 𝑂 ↑ 1 ) = 𝑂 ) |
| 30 |
27 29
|
eqtrd |
⊢ ( 𝑛 = 1 → ( 𝑂 ↑ 𝑛 ) = 𝑂 ) |
| 31 |
|
oveq2 |
⊢ ( 𝑛 = 2 → ( 𝑂 ↑ 𝑛 ) = ( 𝑂 ↑ 2 ) ) |
| 32 |
17 15 16
|
3jca |
⊢ ( ⊤ → ( 1 ∈ ℂ ∧ 𝑂 ∈ ℂ ∧ ( 𝑂 ↑ 2 ) ∈ ℂ ) ) |
| 33 |
|
0cnd |
⊢ ( ⊤ → 0 ∈ ℂ ) |
| 34 |
33 17 4
|
3jca |
⊢ ( ⊤ → ( 0 ∈ ℂ ∧ 1 ∈ ℂ ∧ 2 ∈ ℂ ) ) |
| 35 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 36 |
35
|
a1i |
⊢ ( ⊤ → 1 ≠ 0 ) |
| 37 |
36
|
necomd |
⊢ ( ⊤ → 0 ≠ 1 ) |
| 38 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 39 |
38
|
a1i |
⊢ ( ⊤ → 2 ≠ 0 ) |
| 40 |
39
|
necomd |
⊢ ( ⊤ → 0 ≠ 2 ) |
| 41 |
|
1ne2 |
⊢ 1 ≠ 2 |
| 42 |
41
|
a1i |
⊢ ( ⊤ → 1 ≠ 2 ) |
| 43 |
26 30 31 32 34 37 40 42
|
sumtp |
⊢ ( ⊤ → Σ 𝑛 ∈ { 0 , 1 , 2 } ( 𝑂 ↑ 𝑛 ) = ( ( 1 + 𝑂 ) + ( 𝑂 ↑ 2 ) ) ) |
| 44 |
|
3m1e2 |
⊢ ( 3 − 1 ) = 2 |
| 45 |
44
|
oveq2i |
⊢ ( 0 ... ( 3 − 1 ) ) = ( 0 ... 2 ) |
| 46 |
|
fz0tp |
⊢ ( 0 ... 2 ) = { 0 , 1 , 2 } |
| 47 |
45 46
|
eqtri |
⊢ ( 0 ... ( 3 − 1 ) ) = { 0 , 1 , 2 } |
| 48 |
47
|
sumeq1i |
⊢ Σ 𝑛 ∈ ( 0 ... ( 3 − 1 ) ) ( 𝑂 ↑ 𝑛 ) = Σ 𝑛 ∈ { 0 , 1 , 2 } ( 𝑂 ↑ 𝑛 ) |
| 49 |
1
|
a1i |
⊢ ( ⊤ → 𝑂 = ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ) |
| 50 |
|
ine0 |
⊢ i ≠ 0 |
| 51 |
50
|
a1i |
⊢ ( ⊤ → i ≠ 0 ) |
| 52 |
|
pine0 |
⊢ π ≠ 0 |
| 53 |
52
|
a1i |
⊢ ( ⊤ → π ≠ 0 ) |
| 54 |
4 6 39 53
|
mulne0d |
⊢ ( ⊤ → ( 2 · π ) ≠ 0 ) |
| 55 |
3 7 51 54
|
mulne0d |
⊢ ( ⊤ → ( i · ( 2 · π ) ) ≠ 0 ) |
| 56 |
8 10 8 12 55
|
divdiv32d |
⊢ ( ⊤ → ( ( ( i · ( 2 · π ) ) / 3 ) / ( i · ( 2 · π ) ) ) = ( ( ( i · ( 2 · π ) ) / ( i · ( 2 · π ) ) ) / 3 ) ) |
| 57 |
8 55
|
dividd |
⊢ ( ⊤ → ( ( i · ( 2 · π ) ) / ( i · ( 2 · π ) ) ) = 1 ) |
| 58 |
57
|
oveq1d |
⊢ ( ⊤ → ( ( ( i · ( 2 · π ) ) / ( i · ( 2 · π ) ) ) / 3 ) = ( 1 / 3 ) ) |
| 59 |
56 58
|
eqtrd |
⊢ ( ⊤ → ( ( ( i · ( 2 · π ) ) / 3 ) / ( i · ( 2 · π ) ) ) = ( 1 / 3 ) ) |
| 60 |
|
3re |
⊢ 3 ∈ ℝ |
| 61 |
60
|
a1i |
⊢ ( ⊤ → 3 ∈ ℝ ) |
| 62 |
|
1lt3 |
⊢ 1 < 3 |
| 63 |
62
|
a1i |
⊢ ( ⊤ → 1 < 3 ) |
| 64 |
|
recnz |
⊢ ( ( 3 ∈ ℝ ∧ 1 < 3 ) → ¬ ( 1 / 3 ) ∈ ℤ ) |
| 65 |
61 63 64
|
syl2anc |
⊢ ( ⊤ → ¬ ( 1 / 3 ) ∈ ℤ ) |
| 66 |
59 65
|
eqneltrd |
⊢ ( ⊤ → ¬ ( ( ( i · ( 2 · π ) ) / 3 ) / ( i · ( 2 · π ) ) ) ∈ ℤ ) |
| 67 |
|
efeq1 |
⊢ ( ( ( i · ( 2 · π ) ) / 3 ) ∈ ℂ → ( ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) = 1 ↔ ( ( ( i · ( 2 · π ) ) / 3 ) / ( i · ( 2 · π ) ) ) ∈ ℤ ) ) |
| 68 |
67
|
necon3abid |
⊢ ( ( ( i · ( 2 · π ) ) / 3 ) ∈ ℂ → ( ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ≠ 1 ↔ ¬ ( ( ( i · ( 2 · π ) ) / 3 ) / ( i · ( 2 · π ) ) ) ∈ ℤ ) ) |
| 69 |
68
|
biimpar |
⊢ ( ( ( ( i · ( 2 · π ) ) / 3 ) ∈ ℂ ∧ ¬ ( ( ( i · ( 2 · π ) ) / 3 ) / ( i · ( 2 · π ) ) ) ∈ ℤ ) → ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ≠ 1 ) |
| 70 |
13 66 69
|
syl2anc |
⊢ ( ⊤ → ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ≠ 1 ) |
| 71 |
49 70
|
eqnetrd |
⊢ ( ⊤ → 𝑂 ≠ 1 ) |
| 72 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 73 |
72
|
a1i |
⊢ ( ⊤ → 3 ∈ ℕ0 ) |
| 74 |
15 71 73
|
geoser |
⊢ ( ⊤ → Σ 𝑛 ∈ ( 0 ... ( 3 − 1 ) ) ( 𝑂 ↑ 𝑛 ) = ( ( 1 − ( 𝑂 ↑ 3 ) ) / ( 1 − 𝑂 ) ) ) |
| 75 |
49
|
oveq1d |
⊢ ( ⊤ → ( 𝑂 ↑ 3 ) = ( ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ↑ 3 ) ) |
| 76 |
73
|
nn0zd |
⊢ ( ⊤ → 3 ∈ ℤ ) |
| 77 |
|
efexp |
⊢ ( ( ( ( i · ( 2 · π ) ) / 3 ) ∈ ℂ ∧ 3 ∈ ℤ ) → ( exp ‘ ( 3 · ( ( i · ( 2 · π ) ) / 3 ) ) ) = ( ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ↑ 3 ) ) |
| 78 |
13 76 77
|
syl2anc |
⊢ ( ⊤ → ( exp ‘ ( 3 · ( ( i · ( 2 · π ) ) / 3 ) ) ) = ( ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ↑ 3 ) ) |
| 79 |
8 10 12
|
divcan2d |
⊢ ( ⊤ → ( 3 · ( ( i · ( 2 · π ) ) / 3 ) ) = ( i · ( 2 · π ) ) ) |
| 80 |
79
|
fveq2d |
⊢ ( ⊤ → ( exp ‘ ( 3 · ( ( i · ( 2 · π ) ) / 3 ) ) ) = ( exp ‘ ( i · ( 2 · π ) ) ) ) |
| 81 |
|
ef2pi |
⊢ ( exp ‘ ( i · ( 2 · π ) ) ) = 1 |
| 82 |
80 81
|
eqtrdi |
⊢ ( ⊤ → ( exp ‘ ( 3 · ( ( i · ( 2 · π ) ) / 3 ) ) ) = 1 ) |
| 83 |
75 78 82
|
3eqtr2d |
⊢ ( ⊤ → ( 𝑂 ↑ 3 ) = 1 ) |
| 84 |
83
|
oveq2d |
⊢ ( ⊤ → ( 1 − ( 𝑂 ↑ 3 ) ) = ( 1 − 1 ) ) |
| 85 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 86 |
84 85
|
eqtrdi |
⊢ ( ⊤ → ( 1 − ( 𝑂 ↑ 3 ) ) = 0 ) |
| 87 |
86
|
oveq1d |
⊢ ( ⊤ → ( ( 1 − ( 𝑂 ↑ 3 ) ) / ( 1 − 𝑂 ) ) = ( 0 / ( 1 − 𝑂 ) ) ) |
| 88 |
17 15
|
subcld |
⊢ ( ⊤ → ( 1 − 𝑂 ) ∈ ℂ ) |
| 89 |
71
|
necomd |
⊢ ( ⊤ → 1 ≠ 𝑂 ) |
| 90 |
17 15 89
|
subne0d |
⊢ ( ⊤ → ( 1 − 𝑂 ) ≠ 0 ) |
| 91 |
88 90
|
div0d |
⊢ ( ⊤ → ( 0 / ( 1 − 𝑂 ) ) = 0 ) |
| 92 |
74 87 91
|
3eqtrd |
⊢ ( ⊤ → Σ 𝑛 ∈ ( 0 ... ( 3 − 1 ) ) ( 𝑂 ↑ 𝑛 ) = 0 ) |
| 93 |
48 92
|
eqtr3id |
⊢ ( ⊤ → Σ 𝑛 ∈ { 0 , 1 , 2 } ( 𝑂 ↑ 𝑛 ) = 0 ) |
| 94 |
21 43 93
|
3eqtr2d |
⊢ ( ⊤ → ( ( 𝑂 + 1 ) + ( 𝑂 ↑ 2 ) ) = 0 ) |
| 95 |
19 94
|
eqtrd |
⊢ ( ⊤ → ( ( 𝑂 ↑ 2 ) + ( 𝑂 + 1 ) ) = 0 ) |
| 96 |
95
|
mptru |
⊢ ( ( 𝑂 ↑ 2 ) + ( 𝑂 + 1 ) ) = 0 |