| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cos9thpiminplylem3.1 |
|
| 2 |
|
ax-icn |
|
| 3 |
2
|
a1i |
|
| 4 |
|
2cnd |
|
| 5 |
|
picn |
|
| 6 |
5
|
a1i |
|
| 7 |
4 6
|
mulcld |
|
| 8 |
3 7
|
mulcld |
|
| 9 |
|
3cn |
|
| 10 |
9
|
a1i |
|
| 11 |
|
3ne0 |
|
| 12 |
11
|
a1i |
|
| 13 |
8 10 12
|
divcld |
|
| 14 |
13
|
efcld |
|
| 15 |
1 14
|
eqeltrid |
|
| 16 |
15
|
sqcld |
|
| 17 |
|
1cnd |
|
| 18 |
15 17
|
addcld |
|
| 19 |
16 18
|
addcomd |
|
| 20 |
15 17
|
addcomd |
|
| 21 |
20
|
oveq1d |
|
| 22 |
|
oveq2 |
|
| 23 |
15
|
mptru |
|
| 24 |
23
|
a1i |
|
| 25 |
24
|
exp0d |
|
| 26 |
22 25
|
eqtrd |
|
| 27 |
|
oveq2 |
|
| 28 |
23
|
a1i |
|
| 29 |
28
|
exp1d |
|
| 30 |
27 29
|
eqtrd |
|
| 31 |
|
oveq2 |
|
| 32 |
17 15 16
|
3jca |
|
| 33 |
|
0cnd |
|
| 34 |
33 17 4
|
3jca |
|
| 35 |
|
ax-1ne0 |
|
| 36 |
35
|
a1i |
|
| 37 |
36
|
necomd |
|
| 38 |
|
2ne0 |
|
| 39 |
38
|
a1i |
|
| 40 |
39
|
necomd |
|
| 41 |
|
1ne2 |
|
| 42 |
41
|
a1i |
|
| 43 |
26 30 31 32 34 37 40 42
|
sumtp |
|
| 44 |
|
3m1e2 |
|
| 45 |
44
|
oveq2i |
|
| 46 |
|
fz0tp |
|
| 47 |
45 46
|
eqtri |
|
| 48 |
47
|
sumeq1i |
|
| 49 |
1
|
a1i |
|
| 50 |
|
ine0 |
|
| 51 |
50
|
a1i |
|
| 52 |
|
pine0 |
|
| 53 |
52
|
a1i |
|
| 54 |
4 6 39 53
|
mulne0d |
|
| 55 |
3 7 51 54
|
mulne0d |
|
| 56 |
8 10 8 12 55
|
divdiv32d |
|
| 57 |
8 55
|
dividd |
|
| 58 |
57
|
oveq1d |
|
| 59 |
56 58
|
eqtrd |
|
| 60 |
|
3re |
|
| 61 |
60
|
a1i |
|
| 62 |
|
1lt3 |
|
| 63 |
62
|
a1i |
|
| 64 |
|
recnz |
|
| 65 |
61 63 64
|
syl2anc |
|
| 66 |
59 65
|
eqneltrd |
|
| 67 |
|
efeq1 |
|
| 68 |
67
|
necon3abid |
|
| 69 |
68
|
biimpar |
|
| 70 |
13 66 69
|
syl2anc |
|
| 71 |
49 70
|
eqnetrd |
|
| 72 |
|
3nn0 |
|
| 73 |
72
|
a1i |
|
| 74 |
15 71 73
|
geoser |
|
| 75 |
49
|
oveq1d |
|
| 76 |
73
|
nn0zd |
|
| 77 |
|
efexp |
|
| 78 |
13 76 77
|
syl2anc |
|
| 79 |
8 10 12
|
divcan2d |
|
| 80 |
79
|
fveq2d |
|
| 81 |
|
ef2pi |
|
| 82 |
80 81
|
eqtrdi |
|
| 83 |
75 78 82
|
3eqtr2d |
|
| 84 |
83
|
oveq2d |
|
| 85 |
|
1m1e0 |
|
| 86 |
84 85
|
eqtrdi |
|
| 87 |
86
|
oveq1d |
|
| 88 |
17 15
|
subcld |
|
| 89 |
71
|
necomd |
|
| 90 |
17 15 89
|
subne0d |
|
| 91 |
88 90
|
div0d |
|
| 92 |
74 87 91
|
3eqtrd |
|
| 93 |
48 92
|
eqtr3id |
|
| 94 |
21 43 93
|
3eqtr2d |
|
| 95 |
19 94
|
eqtrd |
|
| 96 |
95
|
mptru |
|