Metamath Proof Explorer


Theorem cos9thpiminplylem3

Description: Lemma for cos9thpiminply . (Contributed by Thierry Arnoux, 14-Nov-2025)

Ref Expression
Hypothesis cos9thpiminplylem3.1 O = e i 2 π 3
Assertion cos9thpiminplylem3 O 2 + O + 1 = 0

Proof

Step Hyp Ref Expression
1 cos9thpiminplylem3.1 O = e i 2 π 3
2 ax-icn i
3 2 a1i i
4 2cnd 2
5 picn π
6 5 a1i π
7 4 6 mulcld 2 π
8 3 7 mulcld i 2 π
9 3cn 3
10 9 a1i 3
11 3ne0 3 0
12 11 a1i 3 0
13 8 10 12 divcld i 2 π 3
14 13 efcld e i 2 π 3
15 1 14 eqeltrid O
16 15 sqcld O 2
17 1cnd 1
18 15 17 addcld O + 1
19 16 18 addcomd O 2 + O + 1 = O + 1 + O 2
20 15 17 addcomd O + 1 = 1 + O
21 20 oveq1d O + 1 + O 2 = 1 + O + O 2
22 oveq2 n = 0 O n = O 0
23 15 mptru O
24 23 a1i n = 0 O
25 24 exp0d n = 0 O 0 = 1
26 22 25 eqtrd n = 0 O n = 1
27 oveq2 n = 1 O n = O 1
28 23 a1i n = 1 O
29 28 exp1d n = 1 O 1 = O
30 27 29 eqtrd n = 1 O n = O
31 oveq2 n = 2 O n = O 2
32 17 15 16 3jca 1 O O 2
33 0cnd 0
34 33 17 4 3jca 0 1 2
35 ax-1ne0 1 0
36 35 a1i 1 0
37 36 necomd 0 1
38 2ne0 2 0
39 38 a1i 2 0
40 39 necomd 0 2
41 1ne2 1 2
42 41 a1i 1 2
43 26 30 31 32 34 37 40 42 sumtp n 0 1 2 O n = 1 + O + O 2
44 3m1e2 3 1 = 2
45 44 oveq2i 0 3 1 = 0 2
46 fz0tp 0 2 = 0 1 2
47 45 46 eqtri 0 3 1 = 0 1 2
48 47 sumeq1i n = 0 3 1 O n = n 0 1 2 O n
49 1 a1i O = e i 2 π 3
50 ine0 i 0
51 50 a1i i 0
52 pine0 π 0
53 52 a1i π 0
54 4 6 39 53 mulne0d 2 π 0
55 3 7 51 54 mulne0d i 2 π 0
56 8 10 8 12 55 divdiv32d i 2 π 3 i 2 π = i 2 π i 2 π 3
57 8 55 dividd i 2 π i 2 π = 1
58 57 oveq1d i 2 π i 2 π 3 = 1 3
59 56 58 eqtrd i 2 π 3 i 2 π = 1 3
60 3re 3
61 60 a1i 3
62 1lt3 1 < 3
63 62 a1i 1 < 3
64 recnz 3 1 < 3 ¬ 1 3
65 61 63 64 syl2anc ¬ 1 3
66 59 65 eqneltrd ¬ i 2 π 3 i 2 π
67 efeq1 i 2 π 3 e i 2 π 3 = 1 i 2 π 3 i 2 π
68 67 necon3abid i 2 π 3 e i 2 π 3 1 ¬ i 2 π 3 i 2 π
69 68 biimpar i 2 π 3 ¬ i 2 π 3 i 2 π e i 2 π 3 1
70 13 66 69 syl2anc e i 2 π 3 1
71 49 70 eqnetrd O 1
72 3nn0 3 0
73 72 a1i 3 0
74 15 71 73 geoser n = 0 3 1 O n = 1 O 3 1 O
75 49 oveq1d O 3 = e i 2 π 3 3
76 73 nn0zd 3
77 efexp i 2 π 3 3 e 3 i 2 π 3 = e i 2 π 3 3
78 13 76 77 syl2anc e 3 i 2 π 3 = e i 2 π 3 3
79 8 10 12 divcan2d 3 i 2 π 3 = i 2 π
80 79 fveq2d e 3 i 2 π 3 = e i 2 π
81 ef2pi e i 2 π = 1
82 80 81 eqtrdi e 3 i 2 π 3 = 1
83 75 78 82 3eqtr2d O 3 = 1
84 83 oveq2d 1 O 3 = 1 1
85 1m1e0 1 1 = 0
86 84 85 eqtrdi 1 O 3 = 0
87 86 oveq1d 1 O 3 1 O = 0 1 O
88 17 15 subcld 1 O
89 71 necomd 1 O
90 17 15 89 subne0d 1 O 0
91 88 90 div0d 0 1 O = 0
92 74 87 91 3eqtrd n = 0 3 1 O n = 0
93 48 92 eqtr3id n 0 1 2 O n = 0
94 21 43 93 3eqtr2d O + 1 + O 2 = 0
95 19 94 eqtrd O 2 + O + 1 = 0
96 95 mptru O 2 + O + 1 = 0