Metamath Proof Explorer


Theorem cos9thpiminplylem5

Description: The constructed complex number A is a root of the polynomial ( ( X ^ 3 ) + ( ( -u 3 x. X ) + 1 ) ) . (Contributed by Thierry Arnoux, 14-Nov-2025)

Ref Expression
Hypotheses cos9thpiminplylem3.1 O = e i 2 π 3
cos9thpiminplylem4.2 Z = O 1 3
cos9thpiminplylem5.3 A = Z + 1 Z
Assertion cos9thpiminplylem5 A 3 + -3 A + 1 = 0

Proof

Step Hyp Ref Expression
1 cos9thpiminplylem3.1 O = e i 2 π 3
2 cos9thpiminplylem4.2 Z = O 1 3
3 cos9thpiminplylem5.3 A = Z + 1 Z
4 ax-icn i
5 2cn 2
6 picn π
7 5 6 mulcli 2 π
8 4 7 mulcli i 2 π
9 3cn 3
10 3ne0 3 0
11 8 9 10 divcli i 2 π 3
12 efcl i 2 π 3 e i 2 π 3
13 11 12 ax-mp e i 2 π 3
14 1 13 eqeltri O
15 ax-1cn 1
16 15 9 10 divcli 1 3
17 cxpcl O 1 3 O 1 3
18 14 16 17 mp2an O 1 3
19 2 18 eqeltri Z
20 efne0 i 2 π 3 e i 2 π 3 0
21 11 20 ax-mp e i 2 π 3 0
22 1 21 eqnetri O 0
23 cxpne0 O O 0 1 3 O 1 3 0
24 14 22 16 23 mp3an O 1 3 0
25 2 24 eqnetri Z 0
26 15 19 25 divcli 1 Z
27 19 26 addcli Z + 1 Z
28 3 27 eqeltri A
29 3nn0 3 0
30 expcl A 3 0 A 3
31 28 29 30 mp2an A 3
32 9 negcli 3
33 32 28 mulcli -3 A
34 33 15 addcli -3 A + 1
35 31 34 pm3.2i A 3 -3 A + 1
36 binom3 Z 1 Z Z + 1 Z 3 = Z 3 + 3 Z 2 1 Z + 3 Z 1 Z 2 + 1 Z 3
37 19 26 36 mp2an Z + 1 Z 3 = Z 3 + 3 Z 2 1 Z + 3 Z 1 Z 2 + 1 Z 3
38 3 oveq1i A 3 = Z + 1 Z 3
39 33 15 negdii -3 A + 1 = - -3 A + -1
40 32 28 mulneg1i -3 A = -3 A
41 40 oveq1i -3 A + -1 = - -3 A + -1
42 9 negnegi -3 = 3
43 42 oveq1i -3 A = 3 A
44 43 oveq1i -3 A + -1 = 3 A + -1
45 41 44 eqtr3i - -3 A + -1 = 3 A + -1
46 6nn0 6 0
47 expcl Z 6 0 Z 6
48 19 46 47 mp2an Z 6
49 expcl Z 3 0 Z 3
50 19 29 49 mp2an Z 3
51 48 50 addcomi Z 6 + Z 3 = Z 3 + Z 6
52 1 2 cos9thpiminplylem4 Z 6 + Z 3 = 1
53 13 sqcli e i 2 π 3 2
54 13 21 pm3.2i e i 2 π 3 e i 2 π 3 0
55 15 53 54 3pm3.2i 1 e i 2 π 3 2 e i 2 π 3 e i 2 π 3 0
56 5 15 11 adddiri 2 + 1 i 2 π 3 = 2 i 2 π 3 + 1 i 2 π 3
57 2p1e3 2 + 1 = 3
58 57 oveq1i 2 + 1 i 2 π 3 = 3 i 2 π 3
59 8 9 10 divcan2i 3 i 2 π 3 = i 2 π
60 58 59 eqtri 2 + 1 i 2 π 3 = i 2 π
61 11 mullidi 1 i 2 π 3 = i 2 π 3
62 61 oveq2i 2 i 2 π 3 + 1 i 2 π 3 = 2 i 2 π 3 + i 2 π 3
63 56 60 62 3eqtr3ri 2 i 2 π 3 + i 2 π 3 = i 2 π
64 63 fveq2i e 2 i 2 π 3 + i 2 π 3 = e i 2 π
65 5 11 mulcli 2 i 2 π 3
66 efadd 2 i 2 π 3 i 2 π 3 e 2 i 2 π 3 + i 2 π 3 = e 2 i 2 π 3 e i 2 π 3
67 65 11 66 mp2an e 2 i 2 π 3 + i 2 π 3 = e 2 i 2 π 3 e i 2 π 3
68 64 67 eqtr3i e i 2 π = e 2 i 2 π 3 e i 2 π 3
69 ef2pi e i 2 π = 1
70 2z 2
71 efexp i 2 π 3 2 e 2 i 2 π 3 = e i 2 π 3 2
72 11 70 71 mp2an e 2 i 2 π 3 = e i 2 π 3 2
73 72 oveq1i e 2 i 2 π 3 e i 2 π 3 = e i 2 π 3 2 e i 2 π 3
74 68 69 73 3eqtr3i 1 = e i 2 π 3 2 e i 2 π 3
75 divmul3 1 e i 2 π 3 2 e i 2 π 3 e i 2 π 3 0 1 e i 2 π 3 = e i 2 π 3 2 1 = e i 2 π 3 2 e i 2 π 3
76 75 biimpar 1 e i 2 π 3 2 e i 2 π 3 e i 2 π 3 0 1 = e i 2 π 3 2 e i 2 π 3 1 e i 2 π 3 = e i 2 π 3 2
77 55 74 76 mp2an 1 e i 2 π 3 = e i 2 π 3 2
78 1 oveq2i 1 O = 1 e i 2 π 3
79 1 oveq1i O 2 = e i 2 π 3 2
80 77 78 79 3eqtr4ri O 2 = 1 O
81 2 oveq1i Z 3 = O 1 3 3
82 3nn 3
83 cxproot O 3 O 1 3 3 = O
84 14 82 83 mp2an O 1 3 3 = O
85 81 84 eqtr2i O = Z 3
86 85 oveq1i O 2 = Z 3 2
87 85 oveq2i 1 O = 1 Z 3
88 80 86 87 3eqtr3i Z 3 2 = 1 Z 3
89 3t2e6 3 2 = 6
90 89 oveq2i Z 3 2 = Z 6
91 2nn0 2 0
92 expmul Z 3 0 2 0 Z 3 2 = Z 3 2
93 19 29 91 92 mp3an Z 3 2 = Z 3 2
94 90 93 eqtr3i Z 6 = Z 3 2
95 3z 3
96 exprec Z Z 0 3 1 Z 3 = 1 Z 3
97 19 25 95 96 mp3an 1 Z 3 = 1 Z 3
98 88 94 97 3eqtr4i Z 6 = 1 Z 3
99 98 oveq2i Z 3 + Z 6 = Z 3 + 1 Z 3
100 51 52 99 3eqtr3i 1 = Z 3 + 1 Z 3
101 sqdivid Z Z 0 Z 2 Z = Z
102 19 25 101 mp2an Z 2 Z = Z
103 19 sqcli Z 2
104 103 19 25 divreci Z 2 Z = Z 2 1 Z
105 102 104 eqtr3i Z = Z 2 1 Z
106 15 5 negsubi 1 + -2 = 1 2
107 5 15 negsubdi2i 2 1 = 1 2
108 2m1e1 2 1 = 1
109 108 negeqi 2 1 = 1
110 106 107 109 3eqtr2i 1 + -2 = 1
111 110 oveq2i Z 1 + -2 = Z 1
112 1z 1
113 91 nn0negzi 2
114 expaddz Z Z 0 1 2 Z 1 + -2 = Z 1 Z 2
115 19 25 112 113 114 mp4an Z 1 + -2 = Z 1 Z 2
116 expn1 Z Z 1 = 1 Z
117 19 116 ax-mp Z 1 = 1 Z
118 111 115 117 3eqtr3i Z 1 Z 2 = 1 Z
119 exp1 Z Z 1 = Z
120 19 119 ax-mp Z 1 = Z
121 expnegz Z Z 0 2 Z 2 = 1 Z 2
122 19 25 70 121 mp3an Z 2 = 1 Z 2
123 19 25 sqrecii 1 Z 2 = 1 Z 2
124 122 123 eqtr4i Z 2 = 1 Z 2
125 120 124 oveq12i Z 1 Z 2 = Z 1 Z 2
126 118 125 eqtr3i 1 Z = Z 1 Z 2
127 105 126 oveq12i Z + 1 Z = Z 2 1 Z + Z 1 Z 2
128 3 127 eqtri A = Z 2 1 Z + Z 1 Z 2
129 128 oveq2i 3 A = 3 Z 2 1 Z + Z 1 Z 2
130 103 26 mulcli Z 2 1 Z
131 26 sqcli 1 Z 2
132 19 131 mulcli Z 1 Z 2
133 9 130 132 adddii 3 Z 2 1 Z + Z 1 Z 2 = 3 Z 2 1 Z + 3 Z 1 Z 2
134 129 133 eqtri 3 A = 3 Z 2 1 Z + 3 Z 1 Z 2
135 100 134 oveq12i - 1 + 3 A = Z 3 + 1 Z 3 + 3 Z 2 1 Z + 3 Z 1 Z 2
136 15 negcli 1
137 9 28 mulcli 3 A
138 136 137 addcomi - 1 + 3 A = 3 A + -1
139 expcl 1 Z 3 0 1 Z 3
140 26 29 139 mp2an 1 Z 3
141 9 130 mulcli 3 Z 2 1 Z
142 9 132 mulcli 3 Z 1 Z 2
143 50 140 141 142 add42i Z 3 + 1 Z 3 + 3 Z 2 1 Z + 3 Z 1 Z 2 = Z 3 + 3 Z 2 1 Z + 3 Z 1 Z 2 + 1 Z 3
144 135 138 143 3eqtr3i 3 A + -1 = Z 3 + 3 Z 2 1 Z + 3 Z 1 Z 2 + 1 Z 3
145 39 45 144 3eqtri -3 A + 1 = Z 3 + 3 Z 2 1 Z + 3 Z 1 Z 2 + 1 Z 3
146 37 38 145 3eqtr4i A 3 = -3 A + 1
147 addeq0 A 3 -3 A + 1 A 3 + -3 A + 1 = 0 A 3 = -3 A + 1
148 147 biimpar A 3 -3 A + 1 A 3 = -3 A + 1 A 3 + -3 A + 1 = 0
149 35 146 148 mp2an A 3 + -3 A + 1 = 0