| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cos9thpinconstr.1 |
⊢ 𝑂 = ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) |
| 2 |
|
0zd |
⊢ ( ⊤ → 0 ∈ ℤ ) |
| 3 |
2
|
zconstr |
⊢ ( ⊤ → 0 ∈ Constr ) |
| 4 |
|
1zzd |
⊢ ( ⊤ → 1 ∈ ℤ ) |
| 5 |
4
|
zconstr |
⊢ ( ⊤ → 1 ∈ Constr ) |
| 6 |
5
|
constrnegcl |
⊢ ( ⊤ → - 1 ∈ Constr ) |
| 7 |
|
ax-icn |
⊢ i ∈ ℂ |
| 8 |
7
|
a1i |
⊢ ( ⊤ → i ∈ ℂ ) |
| 9 |
|
2cnd |
⊢ ( ⊤ → 2 ∈ ℂ ) |
| 10 |
|
picn |
⊢ π ∈ ℂ |
| 11 |
10
|
a1i |
⊢ ( ⊤ → π ∈ ℂ ) |
| 12 |
9 11
|
mulcld |
⊢ ( ⊤ → ( 2 · π ) ∈ ℂ ) |
| 13 |
8 12
|
mulcld |
⊢ ( ⊤ → ( i · ( 2 · π ) ) ∈ ℂ ) |
| 14 |
|
3cn |
⊢ 3 ∈ ℂ |
| 15 |
14
|
a1i |
⊢ ( ⊤ → 3 ∈ ℂ ) |
| 16 |
|
3ne0 |
⊢ 3 ≠ 0 |
| 17 |
16
|
a1i |
⊢ ( ⊤ → 3 ≠ 0 ) |
| 18 |
13 15 17
|
divcld |
⊢ ( ⊤ → ( ( i · ( 2 · π ) ) / 3 ) ∈ ℂ ) |
| 19 |
18
|
efcld |
⊢ ( ⊤ → ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ∈ ℂ ) |
| 20 |
1 19
|
eqeltrid |
⊢ ( ⊤ → 𝑂 ∈ ℂ ) |
| 21 |
|
0cnd |
⊢ ( ⊤ → 0 ∈ ℂ ) |
| 22 |
6
|
constrcn |
⊢ ( ⊤ → - 1 ∈ ℂ ) |
| 23 |
|
1cnd |
⊢ ( ⊤ → 1 ∈ ℂ ) |
| 24 |
21 23
|
subnegd |
⊢ ( ⊤ → ( 0 − - 1 ) = ( 0 + 1 ) ) |
| 25 |
23
|
addlidd |
⊢ ( ⊤ → ( 0 + 1 ) = 1 ) |
| 26 |
24 25
|
eqtrd |
⊢ ( ⊤ → ( 0 − - 1 ) = 1 ) |
| 27 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 28 |
27
|
a1i |
⊢ ( ⊤ → 1 ≠ 0 ) |
| 29 |
26 28
|
eqnetrd |
⊢ ( ⊤ → ( 0 − - 1 ) ≠ 0 ) |
| 30 |
21 22 29
|
subne0ad |
⊢ ( ⊤ → 0 ≠ - 1 ) |
| 31 |
8 12 15 17
|
divassd |
⊢ ( ⊤ → ( ( i · ( 2 · π ) ) / 3 ) = ( i · ( ( 2 · π ) / 3 ) ) ) |
| 32 |
31
|
fveq2d |
⊢ ( ⊤ → ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) = ( exp ‘ ( i · ( ( 2 · π ) / 3 ) ) ) ) |
| 33 |
32
|
fveq2d |
⊢ ( ⊤ → ( abs ‘ ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ) = ( abs ‘ ( exp ‘ ( i · ( ( 2 · π ) / 3 ) ) ) ) ) |
| 34 |
|
2re |
⊢ 2 ∈ ℝ |
| 35 |
34
|
a1i |
⊢ ( ⊤ → 2 ∈ ℝ ) |
| 36 |
|
pire |
⊢ π ∈ ℝ |
| 37 |
36
|
a1i |
⊢ ( ⊤ → π ∈ ℝ ) |
| 38 |
35 37
|
remulcld |
⊢ ( ⊤ → ( 2 · π ) ∈ ℝ ) |
| 39 |
|
3re |
⊢ 3 ∈ ℝ |
| 40 |
39
|
a1i |
⊢ ( ⊤ → 3 ∈ ℝ ) |
| 41 |
38 40 17
|
redivcld |
⊢ ( ⊤ → ( ( 2 · π ) / 3 ) ∈ ℝ ) |
| 42 |
|
absefi |
⊢ ( ( ( 2 · π ) / 3 ) ∈ ℝ → ( abs ‘ ( exp ‘ ( i · ( ( 2 · π ) / 3 ) ) ) ) = 1 ) |
| 43 |
41 42
|
syl |
⊢ ( ⊤ → ( abs ‘ ( exp ‘ ( i · ( ( 2 · π ) / 3 ) ) ) ) = 1 ) |
| 44 |
33 43
|
eqtrd |
⊢ ( ⊤ → ( abs ‘ ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ) = 1 ) |
| 45 |
1
|
a1i |
⊢ ( ⊤ → 𝑂 = ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ) |
| 46 |
45
|
fveq2d |
⊢ ( ⊤ → ( abs ‘ 𝑂 ) = ( abs ‘ ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ) ) |
| 47 |
|
1red |
⊢ ( ⊤ → 1 ∈ ℝ ) |
| 48 |
|
0le1 |
⊢ 0 ≤ 1 |
| 49 |
48
|
a1i |
⊢ ( ⊤ → 0 ≤ 1 ) |
| 50 |
47 49
|
absidd |
⊢ ( ⊤ → ( abs ‘ 1 ) = 1 ) |
| 51 |
44 46 50
|
3eqtr4d |
⊢ ( ⊤ → ( abs ‘ 𝑂 ) = ( abs ‘ 1 ) ) |
| 52 |
20
|
subid1d |
⊢ ( ⊤ → ( 𝑂 − 0 ) = 𝑂 ) |
| 53 |
52
|
fveq2d |
⊢ ( ⊤ → ( abs ‘ ( 𝑂 − 0 ) ) = ( abs ‘ 𝑂 ) ) |
| 54 |
23
|
subid1d |
⊢ ( ⊤ → ( 1 − 0 ) = 1 ) |
| 55 |
54
|
fveq2d |
⊢ ( ⊤ → ( abs ‘ ( 1 − 0 ) ) = ( abs ‘ 1 ) ) |
| 56 |
51 53 55
|
3eqtr4d |
⊢ ( ⊤ → ( abs ‘ ( 𝑂 − 0 ) ) = ( abs ‘ ( 1 − 0 ) ) ) |
| 57 |
20 23
|
subnegd |
⊢ ( ⊤ → ( 𝑂 − - 1 ) = ( 𝑂 + 1 ) ) |
| 58 |
20 23
|
addcld |
⊢ ( ⊤ → ( 𝑂 + 1 ) ∈ ℂ ) |
| 59 |
20
|
sqcld |
⊢ ( ⊤ → ( 𝑂 ↑ 2 ) ∈ ℂ ) |
| 60 |
58 59
|
addcomd |
⊢ ( ⊤ → ( ( 𝑂 + 1 ) + ( 𝑂 ↑ 2 ) ) = ( ( 𝑂 ↑ 2 ) + ( 𝑂 + 1 ) ) ) |
| 61 |
1
|
cos9thpiminplylem3 |
⊢ ( ( 𝑂 ↑ 2 ) + ( 𝑂 + 1 ) ) = 0 |
| 62 |
61
|
a1i |
⊢ ( ⊤ → ( ( 𝑂 ↑ 2 ) + ( 𝑂 + 1 ) ) = 0 ) |
| 63 |
60 62
|
eqtrd |
⊢ ( ⊤ → ( ( 𝑂 + 1 ) + ( 𝑂 ↑ 2 ) ) = 0 ) |
| 64 |
|
addeq0 |
⊢ ( ( ( 𝑂 + 1 ) ∈ ℂ ∧ ( 𝑂 ↑ 2 ) ∈ ℂ ) → ( ( ( 𝑂 + 1 ) + ( 𝑂 ↑ 2 ) ) = 0 ↔ ( 𝑂 + 1 ) = - ( 𝑂 ↑ 2 ) ) ) |
| 65 |
64
|
biimpa |
⊢ ( ( ( ( 𝑂 + 1 ) ∈ ℂ ∧ ( 𝑂 ↑ 2 ) ∈ ℂ ) ∧ ( ( 𝑂 + 1 ) + ( 𝑂 ↑ 2 ) ) = 0 ) → ( 𝑂 + 1 ) = - ( 𝑂 ↑ 2 ) ) |
| 66 |
58 59 63 65
|
syl21anc |
⊢ ( ⊤ → ( 𝑂 + 1 ) = - ( 𝑂 ↑ 2 ) ) |
| 67 |
57 66
|
eqtrd |
⊢ ( ⊤ → ( 𝑂 − - 1 ) = - ( 𝑂 ↑ 2 ) ) |
| 68 |
67
|
fveq2d |
⊢ ( ⊤ → ( abs ‘ ( 𝑂 − - 1 ) ) = ( abs ‘ - ( 𝑂 ↑ 2 ) ) ) |
| 69 |
59
|
absnegd |
⊢ ( ⊤ → ( abs ‘ - ( 𝑂 ↑ 2 ) ) = ( abs ‘ ( 𝑂 ↑ 2 ) ) ) |
| 70 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 71 |
70
|
a1i |
⊢ ( ⊤ → 2 ∈ ℕ0 ) |
| 72 |
20 71
|
absexpd |
⊢ ( ⊤ → ( abs ‘ ( 𝑂 ↑ 2 ) ) = ( ( abs ‘ 𝑂 ) ↑ 2 ) ) |
| 73 |
46 44
|
eqtrd |
⊢ ( ⊤ → ( abs ‘ 𝑂 ) = 1 ) |
| 74 |
73
|
oveq1d |
⊢ ( ⊤ → ( ( abs ‘ 𝑂 ) ↑ 2 ) = ( 1 ↑ 2 ) ) |
| 75 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
| 76 |
55 50
|
eqtrd |
⊢ ( ⊤ → ( abs ‘ ( 1 − 0 ) ) = 1 ) |
| 77 |
75 76
|
eqtr4id |
⊢ ( ⊤ → ( 1 ↑ 2 ) = ( abs ‘ ( 1 − 0 ) ) ) |
| 78 |
72 74 77
|
3eqtrd |
⊢ ( ⊤ → ( abs ‘ ( 𝑂 ↑ 2 ) ) = ( abs ‘ ( 1 − 0 ) ) ) |
| 79 |
68 69 78
|
3eqtrd |
⊢ ( ⊤ → ( abs ‘ ( 𝑂 − - 1 ) ) = ( abs ‘ ( 1 − 0 ) ) ) |
| 80 |
3 5 3 6 5 3 20 30 56 79
|
constrcccl |
⊢ ( ⊤ → 𝑂 ∈ Constr ) |
| 81 |
80
|
mptru |
⊢ 𝑂 ∈ Constr |