Metamath Proof Explorer


Theorem cos9thpinconstrlem1

Description: The complex number O , representing an angle of ( 2 x. _pi ) / 3 , is constructible. (Contributed by Thierry Arnoux, 14-Nov-2025)

Ref Expression
Hypothesis cos9thpinconstr.1 𝑂 = ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) )
Assertion cos9thpinconstrlem1 𝑂 ∈ Constr

Proof

Step Hyp Ref Expression
1 cos9thpinconstr.1 𝑂 = ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) )
2 0zd ( ⊤ → 0 ∈ ℤ )
3 2 zconstr ( ⊤ → 0 ∈ Constr )
4 1zzd ( ⊤ → 1 ∈ ℤ )
5 4 zconstr ( ⊤ → 1 ∈ Constr )
6 5 constrnegcl ( ⊤ → - 1 ∈ Constr )
7 ax-icn i ∈ ℂ
8 7 a1i ( ⊤ → i ∈ ℂ )
9 2cnd ( ⊤ → 2 ∈ ℂ )
10 picn π ∈ ℂ
11 10 a1i ( ⊤ → π ∈ ℂ )
12 9 11 mulcld ( ⊤ → ( 2 · π ) ∈ ℂ )
13 8 12 mulcld ( ⊤ → ( i · ( 2 · π ) ) ∈ ℂ )
14 3cn 3 ∈ ℂ
15 14 a1i ( ⊤ → 3 ∈ ℂ )
16 3ne0 3 ≠ 0
17 16 a1i ( ⊤ → 3 ≠ 0 )
18 13 15 17 divcld ( ⊤ → ( ( i · ( 2 · π ) ) / 3 ) ∈ ℂ )
19 18 efcld ( ⊤ → ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ∈ ℂ )
20 1 19 eqeltrid ( ⊤ → 𝑂 ∈ ℂ )
21 0cnd ( ⊤ → 0 ∈ ℂ )
22 6 constrcn ( ⊤ → - 1 ∈ ℂ )
23 1cnd ( ⊤ → 1 ∈ ℂ )
24 21 23 subnegd ( ⊤ → ( 0 − - 1 ) = ( 0 + 1 ) )
25 23 addlidd ( ⊤ → ( 0 + 1 ) = 1 )
26 24 25 eqtrd ( ⊤ → ( 0 − - 1 ) = 1 )
27 ax-1ne0 1 ≠ 0
28 27 a1i ( ⊤ → 1 ≠ 0 )
29 26 28 eqnetrd ( ⊤ → ( 0 − - 1 ) ≠ 0 )
30 21 22 29 subne0ad ( ⊤ → 0 ≠ - 1 )
31 8 12 15 17 divassd ( ⊤ → ( ( i · ( 2 · π ) ) / 3 ) = ( i · ( ( 2 · π ) / 3 ) ) )
32 31 fveq2d ( ⊤ → ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) = ( exp ‘ ( i · ( ( 2 · π ) / 3 ) ) ) )
33 32 fveq2d ( ⊤ → ( abs ‘ ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ) = ( abs ‘ ( exp ‘ ( i · ( ( 2 · π ) / 3 ) ) ) ) )
34 2re 2 ∈ ℝ
35 34 a1i ( ⊤ → 2 ∈ ℝ )
36 pire π ∈ ℝ
37 36 a1i ( ⊤ → π ∈ ℝ )
38 35 37 remulcld ( ⊤ → ( 2 · π ) ∈ ℝ )
39 3re 3 ∈ ℝ
40 39 a1i ( ⊤ → 3 ∈ ℝ )
41 38 40 17 redivcld ( ⊤ → ( ( 2 · π ) / 3 ) ∈ ℝ )
42 absefi ( ( ( 2 · π ) / 3 ) ∈ ℝ → ( abs ‘ ( exp ‘ ( i · ( ( 2 · π ) / 3 ) ) ) ) = 1 )
43 41 42 syl ( ⊤ → ( abs ‘ ( exp ‘ ( i · ( ( 2 · π ) / 3 ) ) ) ) = 1 )
44 33 43 eqtrd ( ⊤ → ( abs ‘ ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ) = 1 )
45 1 a1i ( ⊤ → 𝑂 = ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) )
46 45 fveq2d ( ⊤ → ( abs ‘ 𝑂 ) = ( abs ‘ ( exp ‘ ( ( i · ( 2 · π ) ) / 3 ) ) ) )
47 1red ( ⊤ → 1 ∈ ℝ )
48 0le1 0 ≤ 1
49 48 a1i ( ⊤ → 0 ≤ 1 )
50 47 49 absidd ( ⊤ → ( abs ‘ 1 ) = 1 )
51 44 46 50 3eqtr4d ( ⊤ → ( abs ‘ 𝑂 ) = ( abs ‘ 1 ) )
52 20 subid1d ( ⊤ → ( 𝑂 − 0 ) = 𝑂 )
53 52 fveq2d ( ⊤ → ( abs ‘ ( 𝑂 − 0 ) ) = ( abs ‘ 𝑂 ) )
54 23 subid1d ( ⊤ → ( 1 − 0 ) = 1 )
55 54 fveq2d ( ⊤ → ( abs ‘ ( 1 − 0 ) ) = ( abs ‘ 1 ) )
56 51 53 55 3eqtr4d ( ⊤ → ( abs ‘ ( 𝑂 − 0 ) ) = ( abs ‘ ( 1 − 0 ) ) )
57 20 23 subnegd ( ⊤ → ( 𝑂 − - 1 ) = ( 𝑂 + 1 ) )
58 20 23 addcld ( ⊤ → ( 𝑂 + 1 ) ∈ ℂ )
59 20 sqcld ( ⊤ → ( 𝑂 ↑ 2 ) ∈ ℂ )
60 58 59 addcomd ( ⊤ → ( ( 𝑂 + 1 ) + ( 𝑂 ↑ 2 ) ) = ( ( 𝑂 ↑ 2 ) + ( 𝑂 + 1 ) ) )
61 1 cos9thpiminplylem3 ( ( 𝑂 ↑ 2 ) + ( 𝑂 + 1 ) ) = 0
62 61 a1i ( ⊤ → ( ( 𝑂 ↑ 2 ) + ( 𝑂 + 1 ) ) = 0 )
63 60 62 eqtrd ( ⊤ → ( ( 𝑂 + 1 ) + ( 𝑂 ↑ 2 ) ) = 0 )
64 addeq0 ( ( ( 𝑂 + 1 ) ∈ ℂ ∧ ( 𝑂 ↑ 2 ) ∈ ℂ ) → ( ( ( 𝑂 + 1 ) + ( 𝑂 ↑ 2 ) ) = 0 ↔ ( 𝑂 + 1 ) = - ( 𝑂 ↑ 2 ) ) )
65 64 biimpa ( ( ( ( 𝑂 + 1 ) ∈ ℂ ∧ ( 𝑂 ↑ 2 ) ∈ ℂ ) ∧ ( ( 𝑂 + 1 ) + ( 𝑂 ↑ 2 ) ) = 0 ) → ( 𝑂 + 1 ) = - ( 𝑂 ↑ 2 ) )
66 58 59 63 65 syl21anc ( ⊤ → ( 𝑂 + 1 ) = - ( 𝑂 ↑ 2 ) )
67 57 66 eqtrd ( ⊤ → ( 𝑂 − - 1 ) = - ( 𝑂 ↑ 2 ) )
68 67 fveq2d ( ⊤ → ( abs ‘ ( 𝑂 − - 1 ) ) = ( abs ‘ - ( 𝑂 ↑ 2 ) ) )
69 59 absnegd ( ⊤ → ( abs ‘ - ( 𝑂 ↑ 2 ) ) = ( abs ‘ ( 𝑂 ↑ 2 ) ) )
70 2nn0 2 ∈ ℕ0
71 70 a1i ( ⊤ → 2 ∈ ℕ0 )
72 20 71 absexpd ( ⊤ → ( abs ‘ ( 𝑂 ↑ 2 ) ) = ( ( abs ‘ 𝑂 ) ↑ 2 ) )
73 46 44 eqtrd ( ⊤ → ( abs ‘ 𝑂 ) = 1 )
74 73 oveq1d ( ⊤ → ( ( abs ‘ 𝑂 ) ↑ 2 ) = ( 1 ↑ 2 ) )
75 sq1 ( 1 ↑ 2 ) = 1
76 55 50 eqtrd ( ⊤ → ( abs ‘ ( 1 − 0 ) ) = 1 )
77 75 76 eqtr4id ( ⊤ → ( 1 ↑ 2 ) = ( abs ‘ ( 1 − 0 ) ) )
78 72 74 77 3eqtrd ( ⊤ → ( abs ‘ ( 𝑂 ↑ 2 ) ) = ( abs ‘ ( 1 − 0 ) ) )
79 68 69 78 3eqtrd ( ⊤ → ( abs ‘ ( 𝑂 − - 1 ) ) = ( abs ‘ ( 1 − 0 ) ) )
80 3 5 3 6 5 3 20 30 56 79 constrcccl ( ⊤ → 𝑂 ∈ Constr )
81 80 mptru 𝑂 ∈ Constr