Metamath Proof Explorer


Theorem cos9thpinconstrlem1

Description: The complex number O , representing an angle of ( 2 x. _pi ) / 3 , is constructible. (Contributed by Thierry Arnoux, 14-Nov-2025)

Ref Expression
Hypothesis cos9thpinconstr.1 O = e i 2 π 3
Assertion cos9thpinconstrlem1 O Constr

Proof

Step Hyp Ref Expression
1 cos9thpinconstr.1 O = e i 2 π 3
2 0zd 0
3 2 zconstr 0 Constr
4 1zzd 1
5 4 zconstr 1 Constr
6 5 constrnegcl 1 Constr
7 ax-icn i
8 7 a1i i
9 2cnd 2
10 picn π
11 10 a1i π
12 9 11 mulcld 2 π
13 8 12 mulcld i 2 π
14 3cn 3
15 14 a1i 3
16 3ne0 3 0
17 16 a1i 3 0
18 13 15 17 divcld i 2 π 3
19 18 efcld e i 2 π 3
20 1 19 eqeltrid O
21 0cnd 0
22 6 constrcn 1
23 1cnd 1
24 21 23 subnegd 0 -1 = 0 + 1
25 23 addlidd 0 + 1 = 1
26 24 25 eqtrd 0 -1 = 1
27 ax-1ne0 1 0
28 27 a1i 1 0
29 26 28 eqnetrd 0 -1 0
30 21 22 29 subne0ad 0 1
31 8 12 15 17 divassd i 2 π 3 = i 2 π 3
32 31 fveq2d e i 2 π 3 = e i 2 π 3
33 32 fveq2d e i 2 π 3 = e i 2 π 3
34 2re 2
35 34 a1i 2
36 pire π
37 36 a1i π
38 35 37 remulcld 2 π
39 3re 3
40 39 a1i 3
41 38 40 17 redivcld 2 π 3
42 absefi 2 π 3 e i 2 π 3 = 1
43 41 42 syl e i 2 π 3 = 1
44 33 43 eqtrd e i 2 π 3 = 1
45 1 a1i O = e i 2 π 3
46 45 fveq2d O = e i 2 π 3
47 1red 1
48 0le1 0 1
49 48 a1i 0 1
50 47 49 absidd 1 = 1
51 44 46 50 3eqtr4d O = 1
52 20 subid1d O 0 = O
53 52 fveq2d O 0 = O
54 23 subid1d 1 0 = 1
55 54 fveq2d 1 0 = 1
56 51 53 55 3eqtr4d O 0 = 1 0
57 20 23 subnegd O -1 = O + 1
58 20 23 addcld O + 1
59 20 sqcld O 2
60 58 59 addcomd O + 1 + O 2 = O 2 + O + 1
61 1 cos9thpiminplylem3 O 2 + O + 1 = 0
62 61 a1i O 2 + O + 1 = 0
63 60 62 eqtrd O + 1 + O 2 = 0
64 addeq0 O + 1 O 2 O + 1 + O 2 = 0 O + 1 = O 2
65 64 biimpa O + 1 O 2 O + 1 + O 2 = 0 O + 1 = O 2
66 58 59 63 65 syl21anc O + 1 = O 2
67 57 66 eqtrd O -1 = O 2
68 67 fveq2d O -1 = O 2
69 59 absnegd O 2 = O 2
70 2nn0 2 0
71 70 a1i 2 0
72 20 71 absexpd O 2 = O 2
73 46 44 eqtrd O = 1
74 73 oveq1d O 2 = 1 2
75 sq1 1 2 = 1
76 55 50 eqtrd 1 0 = 1
77 75 76 eqtr4id 1 2 = 1 0
78 72 74 77 3eqtrd O 2 = 1 0
79 68 69 78 3eqtrd O -1 = 1 0
80 3 5 3 6 5 3 20 30 56 79 constrcccl O Constr
81 80 mptru O Constr