| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cos9thpinconstr.1 |
|
| 2 |
|
0zd |
|
| 3 |
2
|
zconstr |
|
| 4 |
|
1zzd |
|
| 5 |
4
|
zconstr |
|
| 6 |
5
|
constrnegcl |
|
| 7 |
|
ax-icn |
|
| 8 |
7
|
a1i |
|
| 9 |
|
2cnd |
|
| 10 |
|
picn |
|
| 11 |
10
|
a1i |
|
| 12 |
9 11
|
mulcld |
|
| 13 |
8 12
|
mulcld |
|
| 14 |
|
3cn |
|
| 15 |
14
|
a1i |
|
| 16 |
|
3ne0 |
|
| 17 |
16
|
a1i |
|
| 18 |
13 15 17
|
divcld |
|
| 19 |
18
|
efcld |
|
| 20 |
1 19
|
eqeltrid |
|
| 21 |
|
0cnd |
|
| 22 |
6
|
constrcn |
|
| 23 |
|
1cnd |
|
| 24 |
21 23
|
subnegd |
|
| 25 |
23
|
addlidd |
|
| 26 |
24 25
|
eqtrd |
|
| 27 |
|
ax-1ne0 |
|
| 28 |
27
|
a1i |
|
| 29 |
26 28
|
eqnetrd |
|
| 30 |
21 22 29
|
subne0ad |
|
| 31 |
8 12 15 17
|
divassd |
|
| 32 |
31
|
fveq2d |
|
| 33 |
32
|
fveq2d |
|
| 34 |
|
2re |
|
| 35 |
34
|
a1i |
|
| 36 |
|
pire |
|
| 37 |
36
|
a1i |
|
| 38 |
35 37
|
remulcld |
|
| 39 |
|
3re |
|
| 40 |
39
|
a1i |
|
| 41 |
38 40 17
|
redivcld |
|
| 42 |
|
absefi |
|
| 43 |
41 42
|
syl |
|
| 44 |
33 43
|
eqtrd |
|
| 45 |
1
|
a1i |
|
| 46 |
45
|
fveq2d |
|
| 47 |
|
1red |
|
| 48 |
|
0le1 |
|
| 49 |
48
|
a1i |
|
| 50 |
47 49
|
absidd |
|
| 51 |
44 46 50
|
3eqtr4d |
|
| 52 |
20
|
subid1d |
|
| 53 |
52
|
fveq2d |
|
| 54 |
23
|
subid1d |
|
| 55 |
54
|
fveq2d |
|
| 56 |
51 53 55
|
3eqtr4d |
|
| 57 |
20 23
|
subnegd |
|
| 58 |
20 23
|
addcld |
|
| 59 |
20
|
sqcld |
|
| 60 |
58 59
|
addcomd |
|
| 61 |
1
|
cos9thpiminplylem3 |
|
| 62 |
61
|
a1i |
|
| 63 |
60 62
|
eqtrd |
|
| 64 |
|
addeq0 |
|
| 65 |
64
|
biimpa |
|
| 66 |
58 59 63 65
|
syl21anc |
|
| 67 |
57 66
|
eqtrd |
|
| 68 |
67
|
fveq2d |
|
| 69 |
59
|
absnegd |
|
| 70 |
|
2nn0 |
|
| 71 |
70
|
a1i |
|
| 72 |
20 71
|
absexpd |
|
| 73 |
46 44
|
eqtrd |
|
| 74 |
73
|
oveq1d |
|
| 75 |
|
sq1 |
|
| 76 |
55 50
|
eqtrd |
|
| 77 |
75 76
|
eqtr4id |
|
| 78 |
72 74 77
|
3eqtrd |
|
| 79 |
68 69 78
|
3eqtrd |
|
| 80 |
3 5 3 6 5 3 20 30 56 79
|
constrcccl |
|
| 81 |
80
|
mptru |
|