| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1l |
|- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> T e. Tarski ) |
| 2 |
|
simp1r |
|- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> Tr T ) |
| 3 |
|
frn |
|- ( F : A --> T -> ran F C_ T ) |
| 4 |
3
|
3ad2ant3 |
|- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> ran F C_ T ) |
| 5 |
|
tskwe2 |
|- ( T e. Tarski -> T e. dom card ) |
| 6 |
1 5
|
syl |
|- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> T e. dom card ) |
| 7 |
|
simp2 |
|- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> A e. T ) |
| 8 |
|
trss |
|- ( Tr T -> ( A e. T -> A C_ T ) ) |
| 9 |
2 7 8
|
sylc |
|- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> A C_ T ) |
| 10 |
|
ssnum |
|- ( ( T e. dom card /\ A C_ T ) -> A e. dom card ) |
| 11 |
6 9 10
|
syl2anc |
|- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> A e. dom card ) |
| 12 |
|
ffn |
|- ( F : A --> T -> F Fn A ) |
| 13 |
|
dffn4 |
|- ( F Fn A <-> F : A -onto-> ran F ) |
| 14 |
12 13
|
sylib |
|- ( F : A --> T -> F : A -onto-> ran F ) |
| 15 |
14
|
3ad2ant3 |
|- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> F : A -onto-> ran F ) |
| 16 |
|
fodomnum |
|- ( A e. dom card -> ( F : A -onto-> ran F -> ran F ~<_ A ) ) |
| 17 |
11 15 16
|
sylc |
|- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> ran F ~<_ A ) |
| 18 |
|
tsksdom |
|- ( ( T e. Tarski /\ A e. T ) -> A ~< T ) |
| 19 |
1 7 18
|
syl2anc |
|- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> A ~< T ) |
| 20 |
|
domsdomtr |
|- ( ( ran F ~<_ A /\ A ~< T ) -> ran F ~< T ) |
| 21 |
17 19 20
|
syl2anc |
|- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> ran F ~< T ) |
| 22 |
|
tskssel |
|- ( ( T e. Tarski /\ ran F C_ T /\ ran F ~< T ) -> ran F e. T ) |
| 23 |
1 4 21 22
|
syl3anc |
|- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> ran F e. T ) |
| 24 |
|
tskuni |
|- ( ( T e. Tarski /\ Tr T /\ ran F e. T ) -> U. ran F e. T ) |
| 25 |
1 2 23 24
|
syl3anc |
|- ( ( ( T e. Tarski /\ Tr T ) /\ A e. T /\ F : A --> T ) -> U. ran F e. T ) |