Step |
Hyp |
Ref |
Expression |
1 |
|
tz6.12f.1 |
|- F/_ y F |
2 |
|
opeq2 |
|- ( z = y -> <. A , z >. = <. A , y >. ) |
3 |
2
|
eleq1d |
|- ( z = y -> ( <. A , z >. e. F <-> <. A , y >. e. F ) ) |
4 |
1
|
nfel2 |
|- F/ y <. A , z >. e. F |
5 |
|
nfv |
|- F/ z <. A , y >. e. F |
6 |
4 5 3
|
cbveuw |
|- ( E! z <. A , z >. e. F <-> E! y <. A , y >. e. F ) |
7 |
6
|
a1i |
|- ( z = y -> ( E! z <. A , z >. e. F <-> E! y <. A , y >. e. F ) ) |
8 |
3 7
|
anbi12d |
|- ( z = y -> ( ( <. A , z >. e. F /\ E! z <. A , z >. e. F ) <-> ( <. A , y >. e. F /\ E! y <. A , y >. e. F ) ) ) |
9 |
|
eqeq2 |
|- ( z = y -> ( ( F ` A ) = z <-> ( F ` A ) = y ) ) |
10 |
8 9
|
imbi12d |
|- ( z = y -> ( ( ( <. A , z >. e. F /\ E! z <. A , z >. e. F ) -> ( F ` A ) = z ) <-> ( ( <. A , y >. e. F /\ E! y <. A , y >. e. F ) -> ( F ` A ) = y ) ) ) |
11 |
|
tz6.12 |
|- ( ( <. A , z >. e. F /\ E! z <. A , z >. e. F ) -> ( F ` A ) = z ) |
12 |
10 11
|
chvarvv |
|- ( ( <. A , y >. e. F /\ E! y <. A , y >. e. F ) -> ( F ` A ) = y ) |