| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ucnprima.1 |
|- ( ph -> U e. ( UnifOn ` X ) ) |
| 2 |
|
ucnprima.2 |
|- ( ph -> V e. ( UnifOn ` Y ) ) |
| 3 |
|
ucnprima.3 |
|- ( ph -> F e. ( U uCn V ) ) |
| 4 |
|
ucnprima.4 |
|- ( ph -> W e. V ) |
| 5 |
|
ucnprima.5 |
|- G = ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) |
| 6 |
1 2 3 4 5
|
ucnima |
|- ( ph -> E. r e. U ( G " r ) C_ W ) |
| 7 |
5
|
mpofun |
|- Fun G |
| 8 |
|
ustssxp |
|- ( ( U e. ( UnifOn ` X ) /\ r e. U ) -> r C_ ( X X. X ) ) |
| 9 |
1 8
|
sylan |
|- ( ( ph /\ r e. U ) -> r C_ ( X X. X ) ) |
| 10 |
|
opex |
|- <. ( F ` x ) , ( F ` y ) >. e. _V |
| 11 |
5 10
|
dmmpo |
|- dom G = ( X X. X ) |
| 12 |
9 11
|
sseqtrrdi |
|- ( ( ph /\ r e. U ) -> r C_ dom G ) |
| 13 |
|
funimass3 |
|- ( ( Fun G /\ r C_ dom G ) -> ( ( G " r ) C_ W <-> r C_ ( `' G " W ) ) ) |
| 14 |
7 12 13
|
sylancr |
|- ( ( ph /\ r e. U ) -> ( ( G " r ) C_ W <-> r C_ ( `' G " W ) ) ) |
| 15 |
14
|
rexbidva |
|- ( ph -> ( E. r e. U ( G " r ) C_ W <-> E. r e. U r C_ ( `' G " W ) ) ) |
| 16 |
6 15
|
mpbid |
|- ( ph -> E. r e. U r C_ ( `' G " W ) ) |
| 17 |
1
|
adantr |
|- ( ( ph /\ r e. U ) -> U e. ( UnifOn ` X ) ) |
| 18 |
|
simpr |
|- ( ( ph /\ r e. U ) -> r e. U ) |
| 19 |
|
cnvimass |
|- ( `' G " W ) C_ dom G |
| 20 |
19 11
|
sseqtri |
|- ( `' G " W ) C_ ( X X. X ) |
| 21 |
20
|
a1i |
|- ( ( ph /\ r e. U ) -> ( `' G " W ) C_ ( X X. X ) ) |
| 22 |
|
ustssel |
|- ( ( U e. ( UnifOn ` X ) /\ r e. U /\ ( `' G " W ) C_ ( X X. X ) ) -> ( r C_ ( `' G " W ) -> ( `' G " W ) e. U ) ) |
| 23 |
17 18 21 22
|
syl3anc |
|- ( ( ph /\ r e. U ) -> ( r C_ ( `' G " W ) -> ( `' G " W ) e. U ) ) |
| 24 |
23
|
rexlimdva |
|- ( ph -> ( E. r e. U r C_ ( `' G " W ) -> ( `' G " W ) e. U ) ) |
| 25 |
16 24
|
mpd |
|- ( ph -> ( `' G " W ) e. U ) |