| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unfilem1.1 |
|- A e. _om |
| 2 |
|
unfilem1.2 |
|- B e. _om |
| 3 |
|
unfilem1.3 |
|- F = ( x e. B |-> ( A +o x ) ) |
| 4 |
|
ovex |
|- ( A +o x ) e. _V |
| 5 |
4 3
|
fnmpti |
|- F Fn B |
| 6 |
1 2 3
|
unfilem1 |
|- ran F = ( ( A +o B ) \ A ) |
| 7 |
|
df-fo |
|- ( F : B -onto-> ( ( A +o B ) \ A ) <-> ( F Fn B /\ ran F = ( ( A +o B ) \ A ) ) ) |
| 8 |
5 6 7
|
mpbir2an |
|- F : B -onto-> ( ( A +o B ) \ A ) |
| 9 |
|
fof |
|- ( F : B -onto-> ( ( A +o B ) \ A ) -> F : B --> ( ( A +o B ) \ A ) ) |
| 10 |
8 9
|
ax-mp |
|- F : B --> ( ( A +o B ) \ A ) |
| 11 |
|
oveq2 |
|- ( x = z -> ( A +o x ) = ( A +o z ) ) |
| 12 |
|
ovex |
|- ( A +o z ) e. _V |
| 13 |
11 3 12
|
fvmpt |
|- ( z e. B -> ( F ` z ) = ( A +o z ) ) |
| 14 |
|
oveq2 |
|- ( x = w -> ( A +o x ) = ( A +o w ) ) |
| 15 |
|
ovex |
|- ( A +o w ) e. _V |
| 16 |
14 3 15
|
fvmpt |
|- ( w e. B -> ( F ` w ) = ( A +o w ) ) |
| 17 |
13 16
|
eqeqan12d |
|- ( ( z e. B /\ w e. B ) -> ( ( F ` z ) = ( F ` w ) <-> ( A +o z ) = ( A +o w ) ) ) |
| 18 |
|
elnn |
|- ( ( z e. B /\ B e. _om ) -> z e. _om ) |
| 19 |
2 18
|
mpan2 |
|- ( z e. B -> z e. _om ) |
| 20 |
|
elnn |
|- ( ( w e. B /\ B e. _om ) -> w e. _om ) |
| 21 |
2 20
|
mpan2 |
|- ( w e. B -> w e. _om ) |
| 22 |
|
nnacan |
|- ( ( A e. _om /\ z e. _om /\ w e. _om ) -> ( ( A +o z ) = ( A +o w ) <-> z = w ) ) |
| 23 |
1 19 21 22
|
mp3an3an |
|- ( ( z e. B /\ w e. B ) -> ( ( A +o z ) = ( A +o w ) <-> z = w ) ) |
| 24 |
17 23
|
bitrd |
|- ( ( z e. B /\ w e. B ) -> ( ( F ` z ) = ( F ` w ) <-> z = w ) ) |
| 25 |
24
|
biimpd |
|- ( ( z e. B /\ w e. B ) -> ( ( F ` z ) = ( F ` w ) -> z = w ) ) |
| 26 |
25
|
rgen2 |
|- A. z e. B A. w e. B ( ( F ` z ) = ( F ` w ) -> z = w ) |
| 27 |
|
dff13 |
|- ( F : B -1-1-> ( ( A +o B ) \ A ) <-> ( F : B --> ( ( A +o B ) \ A ) /\ A. z e. B A. w e. B ( ( F ` z ) = ( F ` w ) -> z = w ) ) ) |
| 28 |
10 26 27
|
mpbir2an |
|- F : B -1-1-> ( ( A +o B ) \ A ) |
| 29 |
|
df-f1o |
|- ( F : B -1-1-onto-> ( ( A +o B ) \ A ) <-> ( F : B -1-1-> ( ( A +o B ) \ A ) /\ F : B -onto-> ( ( A +o B ) \ A ) ) ) |
| 30 |
28 8 29
|
mpbir2an |
|- F : B -1-1-onto-> ( ( A +o B ) \ A ) |