| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( U. A C_ |^| A /\ -. A = (/) ) -> U. A C_ |^| A ) |
| 2 |
|
df-ne |
|- ( A =/= (/) <-> -. A = (/) ) |
| 3 |
|
intssuni |
|- ( A =/= (/) -> |^| A C_ U. A ) |
| 4 |
2 3
|
sylbir |
|- ( -. A = (/) -> |^| A C_ U. A ) |
| 5 |
4
|
adantl |
|- ( ( U. A C_ |^| A /\ -. A = (/) ) -> |^| A C_ U. A ) |
| 6 |
1 5
|
eqssd |
|- ( ( U. A C_ |^| A /\ -. A = (/) ) -> U. A = |^| A ) |
| 7 |
6
|
ex |
|- ( U. A C_ |^| A -> ( -. A = (/) -> U. A = |^| A ) ) |
| 8 |
7
|
orrd |
|- ( U. A C_ |^| A -> ( A = (/) \/ U. A = |^| A ) ) |
| 9 |
|
ssv |
|- U. A C_ _V |
| 10 |
|
int0 |
|- |^| (/) = _V |
| 11 |
9 10
|
sseqtrri |
|- U. A C_ |^| (/) |
| 12 |
|
inteq |
|- ( A = (/) -> |^| A = |^| (/) ) |
| 13 |
11 12
|
sseqtrrid |
|- ( A = (/) -> U. A C_ |^| A ) |
| 14 |
|
eqimss |
|- ( U. A = |^| A -> U. A C_ |^| A ) |
| 15 |
13 14
|
jaoi |
|- ( ( A = (/) \/ U. A = |^| A ) -> U. A C_ |^| A ) |
| 16 |
8 15
|
impbii |
|- ( U. A C_ |^| A <-> ( A = (/) \/ U. A = |^| A ) ) |