| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unopf1o |
|- ( T e. UniOp -> T : ~H -1-1-onto-> ~H ) |
| 2 |
|
f1ocnvfv2 |
|- ( ( T : ~H -1-1-onto-> ~H /\ B e. ~H ) -> ( T ` ( `' T ` B ) ) = B ) |
| 3 |
1 2
|
sylan |
|- ( ( T e. UniOp /\ B e. ~H ) -> ( T ` ( `' T ` B ) ) = B ) |
| 4 |
3
|
3adant2 |
|- ( ( T e. UniOp /\ A e. ~H /\ B e. ~H ) -> ( T ` ( `' T ` B ) ) = B ) |
| 5 |
4
|
oveq2d |
|- ( ( T e. UniOp /\ A e. ~H /\ B e. ~H ) -> ( ( T ` A ) .ih ( T ` ( `' T ` B ) ) ) = ( ( T ` A ) .ih B ) ) |
| 6 |
|
f1ocnv |
|- ( T : ~H -1-1-onto-> ~H -> `' T : ~H -1-1-onto-> ~H ) |
| 7 |
|
f1of |
|- ( `' T : ~H -1-1-onto-> ~H -> `' T : ~H --> ~H ) |
| 8 |
1 6 7
|
3syl |
|- ( T e. UniOp -> `' T : ~H --> ~H ) |
| 9 |
8
|
ffvelcdmda |
|- ( ( T e. UniOp /\ B e. ~H ) -> ( `' T ` B ) e. ~H ) |
| 10 |
9
|
3adant2 |
|- ( ( T e. UniOp /\ A e. ~H /\ B e. ~H ) -> ( `' T ` B ) e. ~H ) |
| 11 |
|
unop |
|- ( ( T e. UniOp /\ A e. ~H /\ ( `' T ` B ) e. ~H ) -> ( ( T ` A ) .ih ( T ` ( `' T ` B ) ) ) = ( A .ih ( `' T ` B ) ) ) |
| 12 |
10 11
|
syld3an3 |
|- ( ( T e. UniOp /\ A e. ~H /\ B e. ~H ) -> ( ( T ` A ) .ih ( T ` ( `' T ` B ) ) ) = ( A .ih ( `' T ` B ) ) ) |
| 13 |
5 12
|
eqtr3d |
|- ( ( T e. UniOp /\ A e. ~H /\ B e. ~H ) -> ( ( T ` A ) .ih B ) = ( A .ih ( `' T ` B ) ) ) |