| Step | Hyp | Ref | Expression | 
						
							| 1 |  | usgredg2.e |  |-  E = ( iEdg ` G ) | 
						
							| 2 |  | usgredgprv.v |  |-  V = ( Vtx ` G ) | 
						
							| 3 | 1 2 | usgrss |  |-  ( ( G e. USGraph /\ X e. dom E ) -> ( E ` X ) C_ V ) | 
						
							| 4 | 1 | usgredg2 |  |-  ( ( G e. USGraph /\ X e. dom E ) -> ( # ` ( E ` X ) ) = 2 ) | 
						
							| 5 |  | sseq1 |  |-  ( ( E ` X ) = { M , N } -> ( ( E ` X ) C_ V <-> { M , N } C_ V ) ) | 
						
							| 6 |  | fveq2 |  |-  ( ( E ` X ) = { M , N } -> ( # ` ( E ` X ) ) = ( # ` { M , N } ) ) | 
						
							| 7 | 6 | eqeq1d |  |-  ( ( E ` X ) = { M , N } -> ( ( # ` ( E ` X ) ) = 2 <-> ( # ` { M , N } ) = 2 ) ) | 
						
							| 8 | 5 7 | anbi12d |  |-  ( ( E ` X ) = { M , N } -> ( ( ( E ` X ) C_ V /\ ( # ` ( E ` X ) ) = 2 ) <-> ( { M , N } C_ V /\ ( # ` { M , N } ) = 2 ) ) ) | 
						
							| 9 |  | eqid |  |-  { M , N } = { M , N } | 
						
							| 10 | 9 | hashprdifel |  |-  ( ( # ` { M , N } ) = 2 -> ( M e. { M , N } /\ N e. { M , N } /\ M =/= N ) ) | 
						
							| 11 |  | prssg |  |-  ( ( M e. { M , N } /\ N e. { M , N } ) -> ( ( M e. V /\ N e. V ) <-> { M , N } C_ V ) ) | 
						
							| 12 | 11 | 3adant3 |  |-  ( ( M e. { M , N } /\ N e. { M , N } /\ M =/= N ) -> ( ( M e. V /\ N e. V ) <-> { M , N } C_ V ) ) | 
						
							| 13 | 12 | biimprd |  |-  ( ( M e. { M , N } /\ N e. { M , N } /\ M =/= N ) -> ( { M , N } C_ V -> ( M e. V /\ N e. V ) ) ) | 
						
							| 14 | 10 13 | syl |  |-  ( ( # ` { M , N } ) = 2 -> ( { M , N } C_ V -> ( M e. V /\ N e. V ) ) ) | 
						
							| 15 | 14 | impcom |  |-  ( ( { M , N } C_ V /\ ( # ` { M , N } ) = 2 ) -> ( M e. V /\ N e. V ) ) | 
						
							| 16 | 8 15 | biimtrdi |  |-  ( ( E ` X ) = { M , N } -> ( ( ( E ` X ) C_ V /\ ( # ` ( E ` X ) ) = 2 ) -> ( M e. V /\ N e. V ) ) ) | 
						
							| 17 | 16 | com12 |  |-  ( ( ( E ` X ) C_ V /\ ( # ` ( E ` X ) ) = 2 ) -> ( ( E ` X ) = { M , N } -> ( M e. V /\ N e. V ) ) ) | 
						
							| 18 | 3 4 17 | syl2anc |  |-  ( ( G e. USGraph /\ X e. dom E ) -> ( ( E ` X ) = { M , N } -> ( M e. V /\ N e. V ) ) ) |