Step |
Hyp |
Ref |
Expression |
1 |
|
uzrdgxfr.1 |
|- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) |
2 |
|
uzrdgxfr.2 |
|- H = ( rec ( ( x e. _V |-> ( x + 1 ) ) , B ) |` _om ) |
3 |
|
uzrdgxfr.3 |
|- A e. ZZ |
4 |
|
uzrdgxfr.4 |
|- B e. ZZ |
5 |
|
fveq2 |
|- ( y = (/) -> ( G ` y ) = ( G ` (/) ) ) |
6 |
|
fveq2 |
|- ( y = (/) -> ( H ` y ) = ( H ` (/) ) ) |
7 |
6
|
oveq1d |
|- ( y = (/) -> ( ( H ` y ) + ( A - B ) ) = ( ( H ` (/) ) + ( A - B ) ) ) |
8 |
5 7
|
eqeq12d |
|- ( y = (/) -> ( ( G ` y ) = ( ( H ` y ) + ( A - B ) ) <-> ( G ` (/) ) = ( ( H ` (/) ) + ( A - B ) ) ) ) |
9 |
|
fveq2 |
|- ( y = k -> ( G ` y ) = ( G ` k ) ) |
10 |
|
fveq2 |
|- ( y = k -> ( H ` y ) = ( H ` k ) ) |
11 |
10
|
oveq1d |
|- ( y = k -> ( ( H ` y ) + ( A - B ) ) = ( ( H ` k ) + ( A - B ) ) ) |
12 |
9 11
|
eqeq12d |
|- ( y = k -> ( ( G ` y ) = ( ( H ` y ) + ( A - B ) ) <-> ( G ` k ) = ( ( H ` k ) + ( A - B ) ) ) ) |
13 |
|
fveq2 |
|- ( y = suc k -> ( G ` y ) = ( G ` suc k ) ) |
14 |
|
fveq2 |
|- ( y = suc k -> ( H ` y ) = ( H ` suc k ) ) |
15 |
14
|
oveq1d |
|- ( y = suc k -> ( ( H ` y ) + ( A - B ) ) = ( ( H ` suc k ) + ( A - B ) ) ) |
16 |
13 15
|
eqeq12d |
|- ( y = suc k -> ( ( G ` y ) = ( ( H ` y ) + ( A - B ) ) <-> ( G ` suc k ) = ( ( H ` suc k ) + ( A - B ) ) ) ) |
17 |
|
fveq2 |
|- ( y = N -> ( G ` y ) = ( G ` N ) ) |
18 |
|
fveq2 |
|- ( y = N -> ( H ` y ) = ( H ` N ) ) |
19 |
18
|
oveq1d |
|- ( y = N -> ( ( H ` y ) + ( A - B ) ) = ( ( H ` N ) + ( A - B ) ) ) |
20 |
17 19
|
eqeq12d |
|- ( y = N -> ( ( G ` y ) = ( ( H ` y ) + ( A - B ) ) <-> ( G ` N ) = ( ( H ` N ) + ( A - B ) ) ) ) |
21 |
|
zcn |
|- ( B e. ZZ -> B e. CC ) |
22 |
4 21
|
ax-mp |
|- B e. CC |
23 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
24 |
3 23
|
ax-mp |
|- A e. CC |
25 |
22 24
|
pncan3i |
|- ( B + ( A - B ) ) = A |
26 |
4 2
|
om2uz0i |
|- ( H ` (/) ) = B |
27 |
26
|
oveq1i |
|- ( ( H ` (/) ) + ( A - B ) ) = ( B + ( A - B ) ) |
28 |
3 1
|
om2uz0i |
|- ( G ` (/) ) = A |
29 |
25 27 28
|
3eqtr4ri |
|- ( G ` (/) ) = ( ( H ` (/) ) + ( A - B ) ) |
30 |
|
oveq1 |
|- ( ( G ` k ) = ( ( H ` k ) + ( A - B ) ) -> ( ( G ` k ) + 1 ) = ( ( ( H ` k ) + ( A - B ) ) + 1 ) ) |
31 |
3 1
|
om2uzsuci |
|- ( k e. _om -> ( G ` suc k ) = ( ( G ` k ) + 1 ) ) |
32 |
4 2
|
om2uzsuci |
|- ( k e. _om -> ( H ` suc k ) = ( ( H ` k ) + 1 ) ) |
33 |
32
|
oveq1d |
|- ( k e. _om -> ( ( H ` suc k ) + ( A - B ) ) = ( ( ( H ` k ) + 1 ) + ( A - B ) ) ) |
34 |
4 2
|
om2uzuzi |
|- ( k e. _om -> ( H ` k ) e. ( ZZ>= ` B ) ) |
35 |
|
eluzelz |
|- ( ( H ` k ) e. ( ZZ>= ` B ) -> ( H ` k ) e. ZZ ) |
36 |
34 35
|
syl |
|- ( k e. _om -> ( H ` k ) e. ZZ ) |
37 |
36
|
zcnd |
|- ( k e. _om -> ( H ` k ) e. CC ) |
38 |
|
ax-1cn |
|- 1 e. CC |
39 |
24 22
|
subcli |
|- ( A - B ) e. CC |
40 |
|
add32 |
|- ( ( ( H ` k ) e. CC /\ 1 e. CC /\ ( A - B ) e. CC ) -> ( ( ( H ` k ) + 1 ) + ( A - B ) ) = ( ( ( H ` k ) + ( A - B ) ) + 1 ) ) |
41 |
38 39 40
|
mp3an23 |
|- ( ( H ` k ) e. CC -> ( ( ( H ` k ) + 1 ) + ( A - B ) ) = ( ( ( H ` k ) + ( A - B ) ) + 1 ) ) |
42 |
37 41
|
syl |
|- ( k e. _om -> ( ( ( H ` k ) + 1 ) + ( A - B ) ) = ( ( ( H ` k ) + ( A - B ) ) + 1 ) ) |
43 |
33 42
|
eqtrd |
|- ( k e. _om -> ( ( H ` suc k ) + ( A - B ) ) = ( ( ( H ` k ) + ( A - B ) ) + 1 ) ) |
44 |
31 43
|
eqeq12d |
|- ( k e. _om -> ( ( G ` suc k ) = ( ( H ` suc k ) + ( A - B ) ) <-> ( ( G ` k ) + 1 ) = ( ( ( H ` k ) + ( A - B ) ) + 1 ) ) ) |
45 |
30 44
|
syl5ibr |
|- ( k e. _om -> ( ( G ` k ) = ( ( H ` k ) + ( A - B ) ) -> ( G ` suc k ) = ( ( H ` suc k ) + ( A - B ) ) ) ) |
46 |
8 12 16 20 29 45
|
finds |
|- ( N e. _om -> ( G ` N ) = ( ( H ` N ) + ( A - B ) ) ) |