Step |
Hyp |
Ref |
Expression |
1 |
|
vtxdushgrfvedg.v |
|- V = ( Vtx ` G ) |
2 |
|
vtxdushgrfvedg.e |
|- E = ( Edg ` G ) |
3 |
|
vtxdushgrfvedg.d |
|- D = ( VtxDeg ` G ) |
4 |
3
|
fveq1i |
|- ( D ` U ) = ( ( VtxDeg ` G ) ` U ) |
5 |
4
|
a1i |
|- ( ( G e. USHGraph /\ U e. V ) -> ( D ` U ) = ( ( VtxDeg ` G ) ` U ) ) |
6 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
7 |
|
eqid |
|- dom ( iEdg ` G ) = dom ( iEdg ` G ) |
8 |
1 6 7
|
vtxdgval |
|- ( U e. V -> ( ( VtxDeg ` G ) ` U ) = ( ( # ` { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } ) +e ( # ` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } ) ) ) |
9 |
8
|
adantl |
|- ( ( G e. USHGraph /\ U e. V ) -> ( ( VtxDeg ` G ) ` U ) = ( ( # ` { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } ) +e ( # ` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } ) ) ) |
10 |
1 2
|
vtxdushgrfvedglem |
|- ( ( G e. USHGraph /\ U e. V ) -> ( # ` { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } ) = ( # ` { e e. E | U e. e } ) ) |
11 |
|
fvex |
|- ( iEdg ` G ) e. _V |
12 |
11
|
dmex |
|- dom ( iEdg ` G ) e. _V |
13 |
12
|
rabex |
|- { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } e. _V |
14 |
13
|
a1i |
|- ( ( G e. USHGraph /\ U e. V ) -> { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } e. _V ) |
15 |
|
eqid |
|- { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } = { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } |
16 |
|
eqeq1 |
|- ( e = c -> ( e = { U } <-> c = { U } ) ) |
17 |
16
|
cbvrabv |
|- { e e. E | e = { U } } = { c e. E | c = { U } } |
18 |
|
eqid |
|- ( x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } |-> ( ( iEdg ` G ) ` x ) ) = ( x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } |-> ( ( iEdg ` G ) ` x ) ) |
19 |
2 6 15 17 18
|
ushgredgedgloop |
|- ( ( G e. USHGraph /\ U e. V ) -> ( x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } |-> ( ( iEdg ` G ) ` x ) ) : { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } -1-1-onto-> { e e. E | e = { U } } ) |
20 |
14 19
|
hasheqf1od |
|- ( ( G e. USHGraph /\ U e. V ) -> ( # ` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } ) = ( # ` { e e. E | e = { U } } ) ) |
21 |
10 20
|
oveq12d |
|- ( ( G e. USHGraph /\ U e. V ) -> ( ( # ` { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } ) +e ( # ` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } ) ) = ( ( # ` { e e. E | U e. e } ) +e ( # ` { e e. E | e = { U } } ) ) ) |
22 |
5 9 21
|
3eqtrd |
|- ( ( G e. USHGraph /\ U e. V ) -> ( D ` U ) = ( ( # ` { e e. E | U e. e } ) +e ( # ` { e e. E | e = { U } } ) ) ) |