Step |
Hyp |
Ref |
Expression |
1 |
|
zlmodzxzequa.z |
|- Z = ( ZZring freeLMod { 0 , 1 } ) |
2 |
|
zlmodzxzequa.o |
|- .0. = { <. 0 , 0 >. , <. 1 , 0 >. } |
3 |
|
zlmodzxzequa.t |
|- .xb = ( .s ` Z ) |
4 |
|
zlmodzxzequa.m |
|- .- = ( -g ` Z ) |
5 |
|
zlmodzxzequa.a |
|- A = { <. 0 , 3 >. , <. 1 , 6 >. } |
6 |
|
zlmodzxzequa.b |
|- B = { <. 0 , 2 >. , <. 1 , 4 >. } |
7 |
|
3cn |
|- 3 e. CC |
8 |
7
|
2timesi |
|- ( 2 x. 3 ) = ( 3 + 3 ) |
9 |
|
3p3e6 |
|- ( 3 + 3 ) = 6 |
10 |
8 9
|
eqtri |
|- ( 2 x. 3 ) = 6 |
11 |
|
3t2e6 |
|- ( 3 x. 2 ) = 6 |
12 |
10 11
|
oveq12i |
|- ( ( 2 x. 3 ) - ( 3 x. 2 ) ) = ( 6 - 6 ) |
13 |
|
6cn |
|- 6 e. CC |
14 |
13
|
subidi |
|- ( 6 - 6 ) = 0 |
15 |
12 14
|
eqtri |
|- ( ( 2 x. 3 ) - ( 3 x. 2 ) ) = 0 |
16 |
15
|
opeq2i |
|- <. 0 , ( ( 2 x. 3 ) - ( 3 x. 2 ) ) >. = <. 0 , 0 >. |
17 |
|
2t6m3t4e0 |
|- ( ( 2 x. 6 ) - ( 3 x. 4 ) ) = 0 |
18 |
17
|
opeq2i |
|- <. 1 , ( ( 2 x. 6 ) - ( 3 x. 4 ) ) >. = <. 1 , 0 >. |
19 |
16 18
|
preq12i |
|- { <. 0 , ( ( 2 x. 3 ) - ( 3 x. 2 ) ) >. , <. 1 , ( ( 2 x. 6 ) - ( 3 x. 4 ) ) >. } = { <. 0 , 0 >. , <. 1 , 0 >. } |
20 |
5
|
oveq2i |
|- ( 2 .xb A ) = ( 2 .xb { <. 0 , 3 >. , <. 1 , 6 >. } ) |
21 |
|
2z |
|- 2 e. ZZ |
22 |
|
3z |
|- 3 e. ZZ |
23 |
|
6nn |
|- 6 e. NN |
24 |
23
|
nnzi |
|- 6 e. ZZ |
25 |
1 3
|
zlmodzxzscm |
|- ( ( 2 e. ZZ /\ 3 e. ZZ /\ 6 e. ZZ ) -> ( 2 .xb { <. 0 , 3 >. , <. 1 , 6 >. } ) = { <. 0 , ( 2 x. 3 ) >. , <. 1 , ( 2 x. 6 ) >. } ) |
26 |
21 22 24 25
|
mp3an |
|- ( 2 .xb { <. 0 , 3 >. , <. 1 , 6 >. } ) = { <. 0 , ( 2 x. 3 ) >. , <. 1 , ( 2 x. 6 ) >. } |
27 |
20 26
|
eqtri |
|- ( 2 .xb A ) = { <. 0 , ( 2 x. 3 ) >. , <. 1 , ( 2 x. 6 ) >. } |
28 |
6
|
oveq2i |
|- ( 3 .xb B ) = ( 3 .xb { <. 0 , 2 >. , <. 1 , 4 >. } ) |
29 |
|
4z |
|- 4 e. ZZ |
30 |
1 3
|
zlmodzxzscm |
|- ( ( 3 e. ZZ /\ 2 e. ZZ /\ 4 e. ZZ ) -> ( 3 .xb { <. 0 , 2 >. , <. 1 , 4 >. } ) = { <. 0 , ( 3 x. 2 ) >. , <. 1 , ( 3 x. 4 ) >. } ) |
31 |
22 21 29 30
|
mp3an |
|- ( 3 .xb { <. 0 , 2 >. , <. 1 , 4 >. } ) = { <. 0 , ( 3 x. 2 ) >. , <. 1 , ( 3 x. 4 ) >. } |
32 |
28 31
|
eqtri |
|- ( 3 .xb B ) = { <. 0 , ( 3 x. 2 ) >. , <. 1 , ( 3 x. 4 ) >. } |
33 |
27 32
|
oveq12i |
|- ( ( 2 .xb A ) .- ( 3 .xb B ) ) = ( { <. 0 , ( 2 x. 3 ) >. , <. 1 , ( 2 x. 6 ) >. } .- { <. 0 , ( 3 x. 2 ) >. , <. 1 , ( 3 x. 4 ) >. } ) |
34 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ 3 e. ZZ ) -> ( 2 x. 3 ) e. ZZ ) |
35 |
21 22 34
|
mp2an |
|- ( 2 x. 3 ) e. ZZ |
36 |
|
zmulcl |
|- ( ( 3 e. ZZ /\ 2 e. ZZ ) -> ( 3 x. 2 ) e. ZZ ) |
37 |
22 21 36
|
mp2an |
|- ( 3 x. 2 ) e. ZZ |
38 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ 6 e. ZZ ) -> ( 2 x. 6 ) e. ZZ ) |
39 |
21 24 38
|
mp2an |
|- ( 2 x. 6 ) e. ZZ |
40 |
|
zmulcl |
|- ( ( 3 e. ZZ /\ 4 e. ZZ ) -> ( 3 x. 4 ) e. ZZ ) |
41 |
22 29 40
|
mp2an |
|- ( 3 x. 4 ) e. ZZ |
42 |
1 4
|
zlmodzxzsub |
|- ( ( ( ( 2 x. 3 ) e. ZZ /\ ( 3 x. 2 ) e. ZZ ) /\ ( ( 2 x. 6 ) e. ZZ /\ ( 3 x. 4 ) e. ZZ ) ) -> ( { <. 0 , ( 2 x. 3 ) >. , <. 1 , ( 2 x. 6 ) >. } .- { <. 0 , ( 3 x. 2 ) >. , <. 1 , ( 3 x. 4 ) >. } ) = { <. 0 , ( ( 2 x. 3 ) - ( 3 x. 2 ) ) >. , <. 1 , ( ( 2 x. 6 ) - ( 3 x. 4 ) ) >. } ) |
43 |
35 37 39 41 42
|
mp4an |
|- ( { <. 0 , ( 2 x. 3 ) >. , <. 1 , ( 2 x. 6 ) >. } .- { <. 0 , ( 3 x. 2 ) >. , <. 1 , ( 3 x. 4 ) >. } ) = { <. 0 , ( ( 2 x. 3 ) - ( 3 x. 2 ) ) >. , <. 1 , ( ( 2 x. 6 ) - ( 3 x. 4 ) ) >. } |
44 |
33 43
|
eqtri |
|- ( ( 2 .xb A ) .- ( 3 .xb B ) ) = { <. 0 , ( ( 2 x. 3 ) - ( 3 x. 2 ) ) >. , <. 1 , ( ( 2 x. 6 ) - ( 3 x. 4 ) ) >. } |
45 |
19 44 2
|
3eqtr4i |
|- ( ( 2 .xb A ) .- ( 3 .xb B ) ) = .0. |