Metamath Proof Explorer


Theorem zrzeroorngc

Description: The zero ring is a zero object in the category of non-unital rings. (Contributed by AV, 18-Apr-2020)

Ref Expression
Hypotheses zrinitorngc.u
|- ( ph -> U e. V )
zrinitorngc.c
|- C = ( RngCat ` U )
zrinitorngc.z
|- ( ph -> Z e. ( Ring \ NzRing ) )
zrinitorngc.e
|- ( ph -> Z e. U )
Assertion zrzeroorngc
|- ( ph -> Z e. ( ZeroO ` C ) )

Proof

Step Hyp Ref Expression
1 zrinitorngc.u
 |-  ( ph -> U e. V )
2 zrinitorngc.c
 |-  C = ( RngCat ` U )
3 zrinitorngc.z
 |-  ( ph -> Z e. ( Ring \ NzRing ) )
4 zrinitorngc.e
 |-  ( ph -> Z e. U )
5 1 2 3 4 zrinitorngc
 |-  ( ph -> Z e. ( InitO ` C ) )
6 1 2 3 4 zrtermorngc
 |-  ( ph -> Z e. ( TermO ` C ) )
7 eqid
 |-  ( Base ` C ) = ( Base ` C )
8 eqid
 |-  ( Hom ` C ) = ( Hom ` C )
9 2 rngccat
 |-  ( U e. V -> C e. Cat )
10 1 9 syl
 |-  ( ph -> C e. Cat )
11 3 eldifad
 |-  ( ph -> Z e. Ring )
12 ringrng
 |-  ( Z e. Ring -> Z e. Rng )
13 11 12 syl
 |-  ( ph -> Z e. Rng )
14 4 13 elind
 |-  ( ph -> Z e. ( U i^i Rng ) )
15 2 7 1 rngcbas
 |-  ( ph -> ( Base ` C ) = ( U i^i Rng ) )
16 14 15 eleqtrrd
 |-  ( ph -> Z e. ( Base ` C ) )
17 7 8 10 16 iszeroo
 |-  ( ph -> ( Z e. ( ZeroO ` C ) <-> ( Z e. ( InitO ` C ) /\ Z e. ( TermO ` C ) ) ) )
18 5 6 17 mpbir2and
 |-  ( ph -> Z e. ( ZeroO ` C ) )