Step |
Hyp |
Ref |
Expression |
1 |
|
zrinitorngc.u |
|- ( ph -> U e. V ) |
2 |
|
zrinitorngc.c |
|- C = ( RngCat ` U ) |
3 |
|
zrinitorngc.z |
|- ( ph -> Z e. ( Ring \ NzRing ) ) |
4 |
|
zrinitorngc.e |
|- ( ph -> Z e. U ) |
5 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
6 |
2 5 1
|
rngcbas |
|- ( ph -> ( Base ` C ) = ( U i^i Rng ) ) |
7 |
6
|
eleq2d |
|- ( ph -> ( r e. ( Base ` C ) <-> r e. ( U i^i Rng ) ) ) |
8 |
|
elin |
|- ( r e. ( U i^i Rng ) <-> ( r e. U /\ r e. Rng ) ) |
9 |
8
|
simprbi |
|- ( r e. ( U i^i Rng ) -> r e. Rng ) |
10 |
7 9
|
syl6bi |
|- ( ph -> ( r e. ( Base ` C ) -> r e. Rng ) ) |
11 |
10
|
imp |
|- ( ( ph /\ r e. ( Base ` C ) ) -> r e. Rng ) |
12 |
3
|
adantr |
|- ( ( ph /\ r e. ( Base ` C ) ) -> Z e. ( Ring \ NzRing ) ) |
13 |
|
eqid |
|- ( Base ` r ) = ( Base ` r ) |
14 |
|
eqid |
|- ( 0g ` Z ) = ( 0g ` Z ) |
15 |
|
eqid |
|- ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) |
16 |
13 14 15
|
c0rnghm |
|- ( ( r e. Rng /\ Z e. ( Ring \ NzRing ) ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHomo Z ) ) |
17 |
11 12 16
|
syl2anc |
|- ( ( ph /\ r e. ( Base ` C ) ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHomo Z ) ) |
18 |
|
simpr |
|- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHomo Z ) ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHomo Z ) ) |
19 |
1
|
adantr |
|- ( ( ph /\ r e. ( Base ` C ) ) -> U e. V ) |
20 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
21 |
|
simpr |
|- ( ( ph /\ r e. ( Base ` C ) ) -> r e. ( Base ` C ) ) |
22 |
|
eldifi |
|- ( Z e. ( Ring \ NzRing ) -> Z e. Ring ) |
23 |
|
ringrng |
|- ( Z e. Ring -> Z e. Rng ) |
24 |
3 22 23
|
3syl |
|- ( ph -> Z e. Rng ) |
25 |
4 24
|
elind |
|- ( ph -> Z e. ( U i^i Rng ) ) |
26 |
25 6
|
eleqtrrd |
|- ( ph -> Z e. ( Base ` C ) ) |
27 |
26
|
adantr |
|- ( ( ph /\ r e. ( Base ` C ) ) -> Z e. ( Base ` C ) ) |
28 |
2 5 19 20 21 27
|
rngchom |
|- ( ( ph /\ r e. ( Base ` C ) ) -> ( r ( Hom ` C ) Z ) = ( r RngHomo Z ) ) |
29 |
28
|
eqcomd |
|- ( ( ph /\ r e. ( Base ` C ) ) -> ( r RngHomo Z ) = ( r ( Hom ` C ) Z ) ) |
30 |
29
|
eleq2d |
|- ( ( ph /\ r e. ( Base ` C ) ) -> ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHomo Z ) <-> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) ) ) |
31 |
30
|
biimpa |
|- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHomo Z ) ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) ) |
32 |
28
|
eleq2d |
|- ( ( ph /\ r e. ( Base ` C ) ) -> ( h e. ( r ( Hom ` C ) Z ) <-> h e. ( r RngHomo Z ) ) ) |
33 |
|
eqid |
|- ( Base ` Z ) = ( Base ` Z ) |
34 |
13 33
|
rnghmf |
|- ( h e. ( r RngHomo Z ) -> h : ( Base ` r ) --> ( Base ` Z ) ) |
35 |
32 34
|
syl6bi |
|- ( ( ph /\ r e. ( Base ` C ) ) -> ( h e. ( r ( Hom ` C ) Z ) -> h : ( Base ` r ) --> ( Base ` Z ) ) ) |
36 |
35
|
adantr |
|- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHomo Z ) ) -> ( h e. ( r ( Hom ` C ) Z ) -> h : ( Base ` r ) --> ( Base ` Z ) ) ) |
37 |
|
ffn |
|- ( h : ( Base ` r ) --> ( Base ` Z ) -> h Fn ( Base ` r ) ) |
38 |
37
|
adantl |
|- ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHomo Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) -> h Fn ( Base ` r ) ) |
39 |
|
fvex |
|- ( 0g ` Z ) e. _V |
40 |
39 15
|
fnmpti |
|- ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) Fn ( Base ` r ) |
41 |
40
|
a1i |
|- ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHomo Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) Fn ( Base ` r ) ) |
42 |
33 14
|
0ringbas |
|- ( Z e. ( Ring \ NzRing ) -> ( Base ` Z ) = { ( 0g ` Z ) } ) |
43 |
3 42
|
syl |
|- ( ph -> ( Base ` Z ) = { ( 0g ` Z ) } ) |
44 |
43
|
adantr |
|- ( ( ph /\ r e. ( Base ` C ) ) -> ( Base ` Z ) = { ( 0g ` Z ) } ) |
45 |
44
|
feq3d |
|- ( ( ph /\ r e. ( Base ` C ) ) -> ( h : ( Base ` r ) --> ( Base ` Z ) <-> h : ( Base ` r ) --> { ( 0g ` Z ) } ) ) |
46 |
|
fvconst |
|- ( ( h : ( Base ` r ) --> { ( 0g ` Z ) } /\ a e. ( Base ` r ) ) -> ( h ` a ) = ( 0g ` Z ) ) |
47 |
46
|
ex |
|- ( h : ( Base ` r ) --> { ( 0g ` Z ) } -> ( a e. ( Base ` r ) -> ( h ` a ) = ( 0g ` Z ) ) ) |
48 |
45 47
|
syl6bi |
|- ( ( ph /\ r e. ( Base ` C ) ) -> ( h : ( Base ` r ) --> ( Base ` Z ) -> ( a e. ( Base ` r ) -> ( h ` a ) = ( 0g ` Z ) ) ) ) |
49 |
48
|
adantr |
|- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHomo Z ) ) -> ( h : ( Base ` r ) --> ( Base ` Z ) -> ( a e. ( Base ` r ) -> ( h ` a ) = ( 0g ` Z ) ) ) ) |
50 |
49
|
imp31 |
|- ( ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHomo Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) /\ a e. ( Base ` r ) ) -> ( h ` a ) = ( 0g ` Z ) ) |
51 |
|
eqidd |
|- ( a e. ( Base ` r ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) |
52 |
|
eqidd |
|- ( ( a e. ( Base ` r ) /\ x = a ) -> ( 0g ` Z ) = ( 0g ` Z ) ) |
53 |
|
id |
|- ( a e. ( Base ` r ) -> a e. ( Base ` r ) ) |
54 |
39
|
a1i |
|- ( a e. ( Base ` r ) -> ( 0g ` Z ) e. _V ) |
55 |
51 52 53 54
|
fvmptd |
|- ( a e. ( Base ` r ) -> ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ` a ) = ( 0g ` Z ) ) |
56 |
55
|
adantl |
|- ( ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHomo Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) /\ a e. ( Base ` r ) ) -> ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ` a ) = ( 0g ` Z ) ) |
57 |
50 56
|
eqtr4d |
|- ( ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHomo Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) /\ a e. ( Base ` r ) ) -> ( h ` a ) = ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ` a ) ) |
58 |
38 41 57
|
eqfnfvd |
|- ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHomo Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) |
59 |
58
|
ex |
|- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHomo Z ) ) -> ( h : ( Base ` r ) --> ( Base ` Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) |
60 |
36 59
|
syld |
|- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHomo Z ) ) -> ( h e. ( r ( Hom ` C ) Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) |
61 |
60
|
alrimiv |
|- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHomo Z ) ) -> A. h ( h e. ( r ( Hom ` C ) Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) |
62 |
18 31 61
|
3jca |
|- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHomo Z ) ) -> ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHomo Z ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) /\ A. h ( h e. ( r ( Hom ` C ) Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) ) |
63 |
17 62
|
mpdan |
|- ( ( ph /\ r e. ( Base ` C ) ) -> ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHomo Z ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) /\ A. h ( h e. ( r ( Hom ` C ) Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) ) |
64 |
|
eleq1 |
|- ( h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) -> ( h e. ( r ( Hom ` C ) Z ) <-> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) ) ) |
65 |
64
|
eqeu |
|- ( ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHomo Z ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) /\ A. h ( h e. ( r ( Hom ` C ) Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) -> E! h h e. ( r ( Hom ` C ) Z ) ) |
66 |
63 65
|
syl |
|- ( ( ph /\ r e. ( Base ` C ) ) -> E! h h e. ( r ( Hom ` C ) Z ) ) |
67 |
66
|
ralrimiva |
|- ( ph -> A. r e. ( Base ` C ) E! h h e. ( r ( Hom ` C ) Z ) ) |
68 |
2
|
rngccat |
|- ( U e. V -> C e. Cat ) |
69 |
1 68
|
syl |
|- ( ph -> C e. Cat ) |
70 |
5 20 69 26
|
istermo |
|- ( ph -> ( Z e. ( TermO ` C ) <-> A. r e. ( Base ` C ) E! h h e. ( r ( Hom ` C ) Z ) ) ) |
71 |
67 70
|
mpbird |
|- ( ph -> Z e. ( TermO ` C ) ) |