| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zrinitorngc.u |  |-  ( ph -> U e. V ) | 
						
							| 2 |  | zrinitorngc.c |  |-  C = ( RngCat ` U ) | 
						
							| 3 |  | zrinitorngc.z |  |-  ( ph -> Z e. ( Ring \ NzRing ) ) | 
						
							| 4 |  | zrinitorngc.e |  |-  ( ph -> Z e. U ) | 
						
							| 5 |  | eqid |  |-  ( Base ` C ) = ( Base ` C ) | 
						
							| 6 | 2 5 1 | rngcbas |  |-  ( ph -> ( Base ` C ) = ( U i^i Rng ) ) | 
						
							| 7 | 6 | eleq2d |  |-  ( ph -> ( r e. ( Base ` C ) <-> r e. ( U i^i Rng ) ) ) | 
						
							| 8 |  | elin |  |-  ( r e. ( U i^i Rng ) <-> ( r e. U /\ r e. Rng ) ) | 
						
							| 9 | 8 | simprbi |  |-  ( r e. ( U i^i Rng ) -> r e. Rng ) | 
						
							| 10 | 7 9 | biimtrdi |  |-  ( ph -> ( r e. ( Base ` C ) -> r e. Rng ) ) | 
						
							| 11 | 10 | imp |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> r e. Rng ) | 
						
							| 12 | 3 | adantr |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> Z e. ( Ring \ NzRing ) ) | 
						
							| 13 |  | eqid |  |-  ( Base ` r ) = ( Base ` r ) | 
						
							| 14 |  | eqid |  |-  ( 0g ` Z ) = ( 0g ` Z ) | 
						
							| 15 |  | eqid |  |-  ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) | 
						
							| 16 | 13 14 15 | c0rnghm |  |-  ( ( r e. Rng /\ Z e. ( Ring \ NzRing ) ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) ) | 
						
							| 17 | 11 12 16 | syl2anc |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) ) | 
						
							| 18 |  | simpr |  |-  ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) ) | 
						
							| 19 | 1 | adantr |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> U e. V ) | 
						
							| 20 |  | eqid |  |-  ( Hom ` C ) = ( Hom ` C ) | 
						
							| 21 |  | simpr |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> r e. ( Base ` C ) ) | 
						
							| 22 |  | eldifi |  |-  ( Z e. ( Ring \ NzRing ) -> Z e. Ring ) | 
						
							| 23 |  | ringrng |  |-  ( Z e. Ring -> Z e. Rng ) | 
						
							| 24 | 3 22 23 | 3syl |  |-  ( ph -> Z e. Rng ) | 
						
							| 25 | 4 24 | elind |  |-  ( ph -> Z e. ( U i^i Rng ) ) | 
						
							| 26 | 25 6 | eleqtrrd |  |-  ( ph -> Z e. ( Base ` C ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> Z e. ( Base ` C ) ) | 
						
							| 28 | 2 5 19 20 21 27 | rngchom |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( r ( Hom ` C ) Z ) = ( r RngHom Z ) ) | 
						
							| 29 | 28 | eqcomd |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( r RngHom Z ) = ( r ( Hom ` C ) Z ) ) | 
						
							| 30 | 29 | eleq2d |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) <-> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) ) ) | 
						
							| 31 | 30 | biimpa |  |-  ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) ) | 
						
							| 32 | 28 | eleq2d |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( h e. ( r ( Hom ` C ) Z ) <-> h e. ( r RngHom Z ) ) ) | 
						
							| 33 |  | eqid |  |-  ( Base ` Z ) = ( Base ` Z ) | 
						
							| 34 | 13 33 | rnghmf |  |-  ( h e. ( r RngHom Z ) -> h : ( Base ` r ) --> ( Base ` Z ) ) | 
						
							| 35 | 32 34 | biimtrdi |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( h e. ( r ( Hom ` C ) Z ) -> h : ( Base ` r ) --> ( Base ` Z ) ) ) | 
						
							| 36 | 35 | adantr |  |-  ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) ) -> ( h e. ( r ( Hom ` C ) Z ) -> h : ( Base ` r ) --> ( Base ` Z ) ) ) | 
						
							| 37 |  | ffn |  |-  ( h : ( Base ` r ) --> ( Base ` Z ) -> h Fn ( Base ` r ) ) | 
						
							| 38 | 37 | adantl |  |-  ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) -> h Fn ( Base ` r ) ) | 
						
							| 39 |  | fvex |  |-  ( 0g ` Z ) e. _V | 
						
							| 40 | 39 15 | fnmpti |  |-  ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) Fn ( Base ` r ) | 
						
							| 41 | 40 | a1i |  |-  ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) Fn ( Base ` r ) ) | 
						
							| 42 | 33 14 | 0ringbas |  |-  ( Z e. ( Ring \ NzRing ) -> ( Base ` Z ) = { ( 0g ` Z ) } ) | 
						
							| 43 | 3 42 | syl |  |-  ( ph -> ( Base ` Z ) = { ( 0g ` Z ) } ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( Base ` Z ) = { ( 0g ` Z ) } ) | 
						
							| 45 | 44 | feq3d |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( h : ( Base ` r ) --> ( Base ` Z ) <-> h : ( Base ` r ) --> { ( 0g ` Z ) } ) ) | 
						
							| 46 |  | fvconst |  |-  ( ( h : ( Base ` r ) --> { ( 0g ` Z ) } /\ a e. ( Base ` r ) ) -> ( h ` a ) = ( 0g ` Z ) ) | 
						
							| 47 | 46 | ex |  |-  ( h : ( Base ` r ) --> { ( 0g ` Z ) } -> ( a e. ( Base ` r ) -> ( h ` a ) = ( 0g ` Z ) ) ) | 
						
							| 48 | 45 47 | biimtrdi |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( h : ( Base ` r ) --> ( Base ` Z ) -> ( a e. ( Base ` r ) -> ( h ` a ) = ( 0g ` Z ) ) ) ) | 
						
							| 49 | 48 | adantr |  |-  ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) ) -> ( h : ( Base ` r ) --> ( Base ` Z ) -> ( a e. ( Base ` r ) -> ( h ` a ) = ( 0g ` Z ) ) ) ) | 
						
							| 50 | 49 | imp31 |  |-  ( ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) /\ a e. ( Base ` r ) ) -> ( h ` a ) = ( 0g ` Z ) ) | 
						
							| 51 |  | eqidd |  |-  ( a e. ( Base ` r ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) | 
						
							| 52 |  | eqidd |  |-  ( ( a e. ( Base ` r ) /\ x = a ) -> ( 0g ` Z ) = ( 0g ` Z ) ) | 
						
							| 53 |  | id |  |-  ( a e. ( Base ` r ) -> a e. ( Base ` r ) ) | 
						
							| 54 | 39 | a1i |  |-  ( a e. ( Base ` r ) -> ( 0g ` Z ) e. _V ) | 
						
							| 55 | 51 52 53 54 | fvmptd |  |-  ( a e. ( Base ` r ) -> ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ` a ) = ( 0g ` Z ) ) | 
						
							| 56 | 55 | adantl |  |-  ( ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) /\ a e. ( Base ` r ) ) -> ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ` a ) = ( 0g ` Z ) ) | 
						
							| 57 | 50 56 | eqtr4d |  |-  ( ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) /\ a e. ( Base ` r ) ) -> ( h ` a ) = ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ` a ) ) | 
						
							| 58 | 38 41 57 | eqfnfvd |  |-  ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) | 
						
							| 59 | 58 | ex |  |-  ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) ) -> ( h : ( Base ` r ) --> ( Base ` Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) | 
						
							| 60 | 36 59 | syld |  |-  ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) ) -> ( h e. ( r ( Hom ` C ) Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) | 
						
							| 61 | 60 | alrimiv |  |-  ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) ) -> A. h ( h e. ( r ( Hom ` C ) Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) | 
						
							| 62 | 18 31 61 | 3jca |  |-  ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) ) -> ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) /\ A. h ( h e. ( r ( Hom ` C ) Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) ) | 
						
							| 63 | 17 62 | mpdan |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) /\ A. h ( h e. ( r ( Hom ` C ) Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) ) | 
						
							| 64 |  | eleq1 |  |-  ( h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) -> ( h e. ( r ( Hom ` C ) Z ) <-> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) ) ) | 
						
							| 65 | 64 | eqeu |  |-  ( ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RngHom Z ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) /\ A. h ( h e. ( r ( Hom ` C ) Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) -> E! h h e. ( r ( Hom ` C ) Z ) ) | 
						
							| 66 | 63 65 | syl |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> E! h h e. ( r ( Hom ` C ) Z ) ) | 
						
							| 67 | 66 | ralrimiva |  |-  ( ph -> A. r e. ( Base ` C ) E! h h e. ( r ( Hom ` C ) Z ) ) | 
						
							| 68 | 2 | rngccat |  |-  ( U e. V -> C e. Cat ) | 
						
							| 69 | 1 68 | syl |  |-  ( ph -> C e. Cat ) | 
						
							| 70 | 5 20 69 26 | istermo |  |-  ( ph -> ( Z e. ( TermO ` C ) <-> A. r e. ( Base ` C ) E! h h e. ( r ( Hom ` C ) Z ) ) ) | 
						
							| 71 | 67 70 | mpbird |  |-  ( ph -> Z e. ( TermO ` C ) ) |