| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zrinitorngc.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
| 2 |
|
zrinitorngc.c |
⊢ 𝐶 = ( RngCat ‘ 𝑈 ) |
| 3 |
|
zrinitorngc.z |
⊢ ( 𝜑 → 𝑍 ∈ ( Ring ∖ NzRing ) ) |
| 4 |
|
zrinitorngc.e |
⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 6 |
2 5 1
|
rngcbas |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( 𝑈 ∩ Rng ) ) |
| 7 |
6
|
eleq2d |
⊢ ( 𝜑 → ( 𝑟 ∈ ( Base ‘ 𝐶 ) ↔ 𝑟 ∈ ( 𝑈 ∩ Rng ) ) ) |
| 8 |
|
elin |
⊢ ( 𝑟 ∈ ( 𝑈 ∩ Rng ) ↔ ( 𝑟 ∈ 𝑈 ∧ 𝑟 ∈ Rng ) ) |
| 9 |
8
|
simprbi |
⊢ ( 𝑟 ∈ ( 𝑈 ∩ Rng ) → 𝑟 ∈ Rng ) |
| 10 |
7 9
|
biimtrdi |
⊢ ( 𝜑 → ( 𝑟 ∈ ( Base ‘ 𝐶 ) → 𝑟 ∈ Rng ) ) |
| 11 |
10
|
imp |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → 𝑟 ∈ Rng ) |
| 12 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → 𝑍 ∈ ( Ring ∖ NzRing ) ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝑟 ) = ( Base ‘ 𝑟 ) |
| 14 |
|
eqid |
⊢ ( 0g ‘ 𝑍 ) = ( 0g ‘ 𝑍 ) |
| 15 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) |
| 16 |
13 14 15
|
c0rnghm |
⊢ ( ( 𝑟 ∈ Rng ∧ 𝑍 ∈ ( Ring ∖ NzRing ) ) → ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RngHom 𝑍 ) ) |
| 17 |
11 12 16
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RngHom 𝑍 ) ) |
| 18 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RngHom 𝑍 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RngHom 𝑍 ) ) |
| 19 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → 𝑈 ∈ 𝑉 ) |
| 20 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → 𝑟 ∈ ( Base ‘ 𝐶 ) ) |
| 22 |
|
eldifi |
⊢ ( 𝑍 ∈ ( Ring ∖ NzRing ) → 𝑍 ∈ Ring ) |
| 23 |
|
ringrng |
⊢ ( 𝑍 ∈ Ring → 𝑍 ∈ Rng ) |
| 24 |
3 22 23
|
3syl |
⊢ ( 𝜑 → 𝑍 ∈ Rng ) |
| 25 |
4 24
|
elind |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑈 ∩ Rng ) ) |
| 26 |
25 6
|
eleqtrrd |
⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ 𝐶 ) ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → 𝑍 ∈ ( Base ‘ 𝐶 ) ) |
| 28 |
2 5 19 20 21 27
|
rngchom |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) = ( 𝑟 RngHom 𝑍 ) ) |
| 29 |
28
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑟 RngHom 𝑍 ) = ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ) |
| 30 |
29
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RngHom 𝑍 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ) ) |
| 31 |
30
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RngHom 𝑍 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ) |
| 32 |
28
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ↔ ℎ ∈ ( 𝑟 RngHom 𝑍 ) ) ) |
| 33 |
|
eqid |
⊢ ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 ) |
| 34 |
13 33
|
rnghmf |
⊢ ( ℎ ∈ ( 𝑟 RngHom 𝑍 ) → ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ) |
| 35 |
32 34
|
biimtrdi |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) → ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ) ) |
| 36 |
35
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RngHom 𝑍 ) ) → ( ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) → ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ) ) |
| 37 |
|
ffn |
⊢ ( ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) → ℎ Fn ( Base ‘ 𝑟 ) ) |
| 38 |
37
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RngHom 𝑍 ) ) ∧ ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ) → ℎ Fn ( Base ‘ 𝑟 ) ) |
| 39 |
|
fvex |
⊢ ( 0g ‘ 𝑍 ) ∈ V |
| 40 |
39 15
|
fnmpti |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) Fn ( Base ‘ 𝑟 ) |
| 41 |
40
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RngHom 𝑍 ) ) ∧ ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) Fn ( Base ‘ 𝑟 ) ) |
| 42 |
33 14
|
0ringbas |
⊢ ( 𝑍 ∈ ( Ring ∖ NzRing ) → ( Base ‘ 𝑍 ) = { ( 0g ‘ 𝑍 ) } ) |
| 43 |
3 42
|
syl |
⊢ ( 𝜑 → ( Base ‘ 𝑍 ) = { ( 0g ‘ 𝑍 ) } ) |
| 44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( Base ‘ 𝑍 ) = { ( 0g ‘ 𝑍 ) } ) |
| 45 |
44
|
feq3d |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ↔ ℎ : ( Base ‘ 𝑟 ) ⟶ { ( 0g ‘ 𝑍 ) } ) ) |
| 46 |
|
fvconst |
⊢ ( ( ℎ : ( Base ‘ 𝑟 ) ⟶ { ( 0g ‘ 𝑍 ) } ∧ 𝑎 ∈ ( Base ‘ 𝑟 ) ) → ( ℎ ‘ 𝑎 ) = ( 0g ‘ 𝑍 ) ) |
| 47 |
46
|
ex |
⊢ ( ℎ : ( Base ‘ 𝑟 ) ⟶ { ( 0g ‘ 𝑍 ) } → ( 𝑎 ∈ ( Base ‘ 𝑟 ) → ( ℎ ‘ 𝑎 ) = ( 0g ‘ 𝑍 ) ) ) |
| 48 |
45 47
|
biimtrdi |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) → ( 𝑎 ∈ ( Base ‘ 𝑟 ) → ( ℎ ‘ 𝑎 ) = ( 0g ‘ 𝑍 ) ) ) ) |
| 49 |
48
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RngHom 𝑍 ) ) → ( ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) → ( 𝑎 ∈ ( Base ‘ 𝑟 ) → ( ℎ ‘ 𝑎 ) = ( 0g ‘ 𝑍 ) ) ) ) |
| 50 |
49
|
imp31 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RngHom 𝑍 ) ) ∧ ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑟 ) ) → ( ℎ ‘ 𝑎 ) = ( 0g ‘ 𝑍 ) ) |
| 51 |
|
eqidd |
⊢ ( 𝑎 ∈ ( Base ‘ 𝑟 ) → ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ) |
| 52 |
|
eqidd |
⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑟 ) ∧ 𝑥 = 𝑎 ) → ( 0g ‘ 𝑍 ) = ( 0g ‘ 𝑍 ) ) |
| 53 |
|
id |
⊢ ( 𝑎 ∈ ( Base ‘ 𝑟 ) → 𝑎 ∈ ( Base ‘ 𝑟 ) ) |
| 54 |
39
|
a1i |
⊢ ( 𝑎 ∈ ( Base ‘ 𝑟 ) → ( 0g ‘ 𝑍 ) ∈ V ) |
| 55 |
51 52 53 54
|
fvmptd |
⊢ ( 𝑎 ∈ ( Base ‘ 𝑟 ) → ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ‘ 𝑎 ) = ( 0g ‘ 𝑍 ) ) |
| 56 |
55
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RngHom 𝑍 ) ) ∧ ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑟 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ‘ 𝑎 ) = ( 0g ‘ 𝑍 ) ) |
| 57 |
50 56
|
eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RngHom 𝑍 ) ) ∧ ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑟 ) ) → ( ℎ ‘ 𝑎 ) = ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ‘ 𝑎 ) ) |
| 58 |
38 41 57
|
eqfnfvd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RngHom 𝑍 ) ) ∧ ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ) → ℎ = ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ) |
| 59 |
58
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RngHom 𝑍 ) ) → ( ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) → ℎ = ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ) ) |
| 60 |
36 59
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RngHom 𝑍 ) ) → ( ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) → ℎ = ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ) ) |
| 61 |
60
|
alrimiv |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RngHom 𝑍 ) ) → ∀ ℎ ( ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) → ℎ = ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ) ) |
| 62 |
18 31 61
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RngHom 𝑍 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RngHom 𝑍 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ∧ ∀ ℎ ( ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) → ℎ = ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ) ) ) |
| 63 |
17 62
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RngHom 𝑍 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ∧ ∀ ℎ ( ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) → ℎ = ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ) ) ) |
| 64 |
|
eleq1 |
⊢ ( ℎ = ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) → ( ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ) ) |
| 65 |
64
|
eqeu |
⊢ ( ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RngHom 𝑍 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ∧ ∀ ℎ ( ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) → ℎ = ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ) ) → ∃! ℎ ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ) |
| 66 |
63 65
|
syl |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ∃! ℎ ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ) |
| 67 |
66
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑟 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ) |
| 68 |
2
|
rngccat |
⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
| 69 |
1 68
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 70 |
5 20 69 26
|
istermo |
⊢ ( 𝜑 → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) ↔ ∀ 𝑟 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ) ) |
| 71 |
67 70
|
mpbird |
⊢ ( 𝜑 → 𝑍 ∈ ( TermO ‘ 𝐶 ) ) |