| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zrinitorngc.u |
|
| 2 |
|
zrinitorngc.c |
|
| 3 |
|
zrinitorngc.z |
|
| 4 |
|
zrinitorngc.e |
|
| 5 |
|
eqid |
|
| 6 |
2 5 1
|
rngcbas |
|
| 7 |
6
|
eleq2d |
|
| 8 |
|
elin |
|
| 9 |
8
|
simprbi |
|
| 10 |
7 9
|
biimtrdi |
|
| 11 |
10
|
imp |
|
| 12 |
3
|
adantr |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
|
eqid |
|
| 16 |
13 14 15
|
c0rnghm |
|
| 17 |
11 12 16
|
syl2anc |
|
| 18 |
|
simpr |
|
| 19 |
1
|
adantr |
|
| 20 |
|
eqid |
|
| 21 |
|
simpr |
|
| 22 |
|
eldifi |
|
| 23 |
|
ringrng |
|
| 24 |
3 22 23
|
3syl |
|
| 25 |
4 24
|
elind |
|
| 26 |
25 6
|
eleqtrrd |
|
| 27 |
26
|
adantr |
|
| 28 |
2 5 19 20 21 27
|
rngchom |
|
| 29 |
28
|
eqcomd |
|
| 30 |
29
|
eleq2d |
|
| 31 |
30
|
biimpa |
|
| 32 |
28
|
eleq2d |
|
| 33 |
|
eqid |
|
| 34 |
13 33
|
rnghmf |
|
| 35 |
32 34
|
biimtrdi |
|
| 36 |
35
|
adantr |
|
| 37 |
|
ffn |
|
| 38 |
37
|
adantl |
|
| 39 |
|
fvex |
|
| 40 |
39 15
|
fnmpti |
|
| 41 |
40
|
a1i |
|
| 42 |
33 14
|
0ringbas |
|
| 43 |
3 42
|
syl |
|
| 44 |
43
|
adantr |
|
| 45 |
44
|
feq3d |
|
| 46 |
|
fvconst |
|
| 47 |
46
|
ex |
|
| 48 |
45 47
|
biimtrdi |
|
| 49 |
48
|
adantr |
|
| 50 |
49
|
imp31 |
|
| 51 |
|
eqidd |
|
| 52 |
|
eqidd |
|
| 53 |
|
id |
|
| 54 |
39
|
a1i |
|
| 55 |
51 52 53 54
|
fvmptd |
|
| 56 |
55
|
adantl |
|
| 57 |
50 56
|
eqtr4d |
|
| 58 |
38 41 57
|
eqfnfvd |
|
| 59 |
58
|
ex |
|
| 60 |
36 59
|
syld |
|
| 61 |
60
|
alrimiv |
|
| 62 |
18 31 61
|
3jca |
|
| 63 |
17 62
|
mpdan |
|
| 64 |
|
eleq1 |
|
| 65 |
64
|
eqeu |
|
| 66 |
63 65
|
syl |
|
| 67 |
66
|
ralrimiva |
|
| 68 |
2
|
rngccat |
|
| 69 |
1 68
|
syl |
|
| 70 |
5 20 69 26
|
istermo |
|
| 71 |
67 70
|
mpbird |
|