| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zrinitorngc.u |  |-  ( ph -> U e. V ) | 
						
							| 2 |  | zrinitorngc.c |  |-  C = ( RngCat ` U ) | 
						
							| 3 |  | zrinitorngc.z |  |-  ( ph -> Z e. ( Ring \ NzRing ) ) | 
						
							| 4 |  | zrinitorngc.e |  |-  ( ph -> Z e. U ) | 
						
							| 5 |  | eqid |  |-  ( Base ` C ) = ( Base ` C ) | 
						
							| 6 | 2 5 1 | rngcbas |  |-  ( ph -> ( Base ` C ) = ( U i^i Rng ) ) | 
						
							| 7 | 6 | eleq2d |  |-  ( ph -> ( r e. ( Base ` C ) <-> r e. ( U i^i Rng ) ) ) | 
						
							| 8 |  | elin |  |-  ( r e. ( U i^i Rng ) <-> ( r e. U /\ r e. Rng ) ) | 
						
							| 9 | 8 | simprbi |  |-  ( r e. ( U i^i Rng ) -> r e. Rng ) | 
						
							| 10 | 7 9 | biimtrdi |  |-  ( ph -> ( r e. ( Base ` C ) -> r e. Rng ) ) | 
						
							| 11 | 10 | imp |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> r e. Rng ) | 
						
							| 12 | 3 | adantr |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> Z e. ( Ring \ NzRing ) ) | 
						
							| 13 |  | eqid |  |-  ( Base ` Z ) = ( Base ` Z ) | 
						
							| 14 |  | eqid |  |-  ( 0g ` r ) = ( 0g ` r ) | 
						
							| 15 |  | eqid |  |-  ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) = ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) | 
						
							| 16 | 13 14 15 | zrrnghm |  |-  ( ( r e. Rng /\ Z e. ( Ring \ NzRing ) ) -> ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z RngHom r ) ) | 
						
							| 17 | 11 12 16 | syl2anc |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z RngHom r ) ) | 
						
							| 18 |  | simpr |  |-  ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z RngHom r ) ) -> ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z RngHom r ) ) | 
						
							| 19 | 1 | adantr |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> U e. V ) | 
						
							| 20 |  | eqid |  |-  ( Hom ` C ) = ( Hom ` C ) | 
						
							| 21 |  | eldifi |  |-  ( Z e. ( Ring \ NzRing ) -> Z e. Ring ) | 
						
							| 22 |  | ringrng |  |-  ( Z e. Ring -> Z e. Rng ) | 
						
							| 23 | 3 21 22 | 3syl |  |-  ( ph -> Z e. Rng ) | 
						
							| 24 | 4 23 | elind |  |-  ( ph -> Z e. ( U i^i Rng ) ) | 
						
							| 25 | 24 6 | eleqtrrd |  |-  ( ph -> Z e. ( Base ` C ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> Z e. ( Base ` C ) ) | 
						
							| 27 |  | simpr |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> r e. ( Base ` C ) ) | 
						
							| 28 | 2 5 19 20 26 27 | rngchom |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( Z ( Hom ` C ) r ) = ( Z RngHom r ) ) | 
						
							| 29 | 28 | eqcomd |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( Z RngHom r ) = ( Z ( Hom ` C ) r ) ) | 
						
							| 30 | 29 | eleq2d |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z RngHom r ) <-> ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z ( Hom ` C ) r ) ) ) | 
						
							| 31 | 30 | biimpa |  |-  ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z RngHom r ) ) -> ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z ( Hom ` C ) r ) ) | 
						
							| 32 | 28 | eleq2d |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( h e. ( Z ( Hom ` C ) r ) <-> h e. ( Z RngHom r ) ) ) | 
						
							| 33 |  | eqid |  |-  ( Base ` r ) = ( Base ` r ) | 
						
							| 34 | 13 33 | rnghmf |  |-  ( h e. ( Z RngHom r ) -> h : ( Base ` Z ) --> ( Base ` r ) ) | 
						
							| 35 | 32 34 | biimtrdi |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( h e. ( Z ( Hom ` C ) r ) -> h : ( Base ` Z ) --> ( Base ` r ) ) ) | 
						
							| 36 | 35 | imp |  |-  ( ( ( ph /\ r e. ( Base ` C ) ) /\ h e. ( Z ( Hom ` C ) r ) ) -> h : ( Base ` Z ) --> ( Base ` r ) ) | 
						
							| 37 |  | ffn |  |-  ( h : ( Base ` Z ) --> ( Base ` r ) -> h Fn ( Base ` Z ) ) | 
						
							| 38 | 37 | adantl |  |-  ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ h e. ( Z ( Hom ` C ) r ) ) /\ h : ( Base ` Z ) --> ( Base ` r ) ) -> h Fn ( Base ` Z ) ) | 
						
							| 39 |  | fvex |  |-  ( 0g ` r ) e. _V | 
						
							| 40 | 39 15 | fnmpti |  |-  ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) Fn ( Base ` Z ) | 
						
							| 41 | 40 | a1i |  |-  ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ h e. ( Z ( Hom ` C ) r ) ) /\ h : ( Base ` Z ) --> ( Base ` r ) ) -> ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) Fn ( Base ` Z ) ) | 
						
							| 42 | 32 | biimpa |  |-  ( ( ( ph /\ r e. ( Base ` C ) ) /\ h e. ( Z ( Hom ` C ) r ) ) -> h e. ( Z RngHom r ) ) | 
						
							| 43 |  | rnghmghm |  |-  ( h e. ( Z RngHom r ) -> h e. ( Z GrpHom r ) ) | 
						
							| 44 |  | eqid |  |-  ( 0g ` Z ) = ( 0g ` Z ) | 
						
							| 45 | 44 14 | ghmid |  |-  ( h e. ( Z GrpHom r ) -> ( h ` ( 0g ` Z ) ) = ( 0g ` r ) ) | 
						
							| 46 | 42 43 45 | 3syl |  |-  ( ( ( ph /\ r e. ( Base ` C ) ) /\ h e. ( Z ( Hom ` C ) r ) ) -> ( h ` ( 0g ` Z ) ) = ( 0g ` r ) ) | 
						
							| 47 | 46 | ad2antrr |  |-  ( ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ h e. ( Z ( Hom ` C ) r ) ) /\ h : ( Base ` Z ) --> ( Base ` r ) ) /\ a e. ( Base ` Z ) ) -> ( h ` ( 0g ` Z ) ) = ( 0g ` r ) ) | 
						
							| 48 | 13 44 | 0ringbas |  |-  ( Z e. ( Ring \ NzRing ) -> ( Base ` Z ) = { ( 0g ` Z ) } ) | 
						
							| 49 | 3 48 | syl |  |-  ( ph -> ( Base ` Z ) = { ( 0g ` Z ) } ) | 
						
							| 50 | 49 | eleq2d |  |-  ( ph -> ( a e. ( Base ` Z ) <-> a e. { ( 0g ` Z ) } ) ) | 
						
							| 51 |  | elsni |  |-  ( a e. { ( 0g ` Z ) } -> a = ( 0g ` Z ) ) | 
						
							| 52 | 51 | fveq2d |  |-  ( a e. { ( 0g ` Z ) } -> ( h ` a ) = ( h ` ( 0g ` Z ) ) ) | 
						
							| 53 | 50 52 | biimtrdi |  |-  ( ph -> ( a e. ( Base ` Z ) -> ( h ` a ) = ( h ` ( 0g ` Z ) ) ) ) | 
						
							| 54 | 53 | adantr |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( a e. ( Base ` Z ) -> ( h ` a ) = ( h ` ( 0g ` Z ) ) ) ) | 
						
							| 55 | 54 | ad2antrr |  |-  ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ h e. ( Z ( Hom ` C ) r ) ) /\ h : ( Base ` Z ) --> ( Base ` r ) ) -> ( a e. ( Base ` Z ) -> ( h ` a ) = ( h ` ( 0g ` Z ) ) ) ) | 
						
							| 56 | 55 | imp |  |-  ( ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ h e. ( Z ( Hom ` C ) r ) ) /\ h : ( Base ` Z ) --> ( Base ` r ) ) /\ a e. ( Base ` Z ) ) -> ( h ` a ) = ( h ` ( 0g ` Z ) ) ) | 
						
							| 57 |  | eqidd |  |-  ( a e. ( Base ` Z ) -> ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) = ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) ) | 
						
							| 58 |  | eqidd |  |-  ( ( a e. ( Base ` Z ) /\ x = a ) -> ( 0g ` r ) = ( 0g ` r ) ) | 
						
							| 59 |  | id |  |-  ( a e. ( Base ` Z ) -> a e. ( Base ` Z ) ) | 
						
							| 60 | 39 | a1i |  |-  ( a e. ( Base ` Z ) -> ( 0g ` r ) e. _V ) | 
						
							| 61 | 57 58 59 60 | fvmptd |  |-  ( a e. ( Base ` Z ) -> ( ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) ` a ) = ( 0g ` r ) ) | 
						
							| 62 | 61 | adantl |  |-  ( ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ h e. ( Z ( Hom ` C ) r ) ) /\ h : ( Base ` Z ) --> ( Base ` r ) ) /\ a e. ( Base ` Z ) ) -> ( ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) ` a ) = ( 0g ` r ) ) | 
						
							| 63 | 47 56 62 | 3eqtr4d |  |-  ( ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ h e. ( Z ( Hom ` C ) r ) ) /\ h : ( Base ` Z ) --> ( Base ` r ) ) /\ a e. ( Base ` Z ) ) -> ( h ` a ) = ( ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) ` a ) ) | 
						
							| 64 | 38 41 63 | eqfnfvd |  |-  ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ h e. ( Z ( Hom ` C ) r ) ) /\ h : ( Base ` Z ) --> ( Base ` r ) ) -> h = ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) ) | 
						
							| 65 | 36 64 | mpdan |  |-  ( ( ( ph /\ r e. ( Base ` C ) ) /\ h e. ( Z ( Hom ` C ) r ) ) -> h = ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) ) | 
						
							| 66 | 65 | ex |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( h e. ( Z ( Hom ` C ) r ) -> h = ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) ) ) | 
						
							| 67 | 66 | adantr |  |-  ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z RngHom r ) ) -> ( h e. ( Z ( Hom ` C ) r ) -> h = ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) ) ) | 
						
							| 68 | 67 | alrimiv |  |-  ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z RngHom r ) ) -> A. h ( h e. ( Z ( Hom ` C ) r ) -> h = ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) ) ) | 
						
							| 69 | 18 31 68 | 3jca |  |-  ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z RngHom r ) ) -> ( ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z RngHom r ) /\ ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z ( Hom ` C ) r ) /\ A. h ( h e. ( Z ( Hom ` C ) r ) -> h = ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) ) ) ) | 
						
							| 70 | 17 69 | mpdan |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> ( ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z RngHom r ) /\ ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z ( Hom ` C ) r ) /\ A. h ( h e. ( Z ( Hom ` C ) r ) -> h = ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) ) ) ) | 
						
							| 71 |  | eleq1 |  |-  ( h = ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) -> ( h e. ( Z ( Hom ` C ) r ) <-> ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z ( Hom ` C ) r ) ) ) | 
						
							| 72 | 71 | eqeu |  |-  ( ( ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z RngHom r ) /\ ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) e. ( Z ( Hom ` C ) r ) /\ A. h ( h e. ( Z ( Hom ` C ) r ) -> h = ( x e. ( Base ` Z ) |-> ( 0g ` r ) ) ) ) -> E! h h e. ( Z ( Hom ` C ) r ) ) | 
						
							| 73 | 70 72 | syl |  |-  ( ( ph /\ r e. ( Base ` C ) ) -> E! h h e. ( Z ( Hom ` C ) r ) ) | 
						
							| 74 | 73 | ralrimiva |  |-  ( ph -> A. r e. ( Base ` C ) E! h h e. ( Z ( Hom ` C ) r ) ) | 
						
							| 75 | 2 | rngccat |  |-  ( U e. V -> C e. Cat ) | 
						
							| 76 | 1 75 | syl |  |-  ( ph -> C e. Cat ) | 
						
							| 77 | 5 20 76 25 | isinito |  |-  ( ph -> ( Z e. ( InitO ` C ) <-> A. r e. ( Base ` C ) E! h h e. ( Z ( Hom ` C ) r ) ) ) | 
						
							| 78 | 74 77 | mpbird |  |-  ( ph -> Z e. ( InitO ` C ) ) |