Step |
Hyp |
Ref |
Expression |
1 |
|
zrinitorngc.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
2 |
|
zrinitorngc.c |
⊢ 𝐶 = ( RngCat ‘ 𝑈 ) |
3 |
|
zrinitorngc.z |
⊢ ( 𝜑 → 𝑍 ∈ ( Ring ∖ NzRing ) ) |
4 |
|
zrinitorngc.e |
⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
6 |
2 5 1
|
rngcbas |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( 𝑈 ∩ Rng ) ) |
7 |
6
|
eleq2d |
⊢ ( 𝜑 → ( 𝑟 ∈ ( Base ‘ 𝐶 ) ↔ 𝑟 ∈ ( 𝑈 ∩ Rng ) ) ) |
8 |
|
elin |
⊢ ( 𝑟 ∈ ( 𝑈 ∩ Rng ) ↔ ( 𝑟 ∈ 𝑈 ∧ 𝑟 ∈ Rng ) ) |
9 |
8
|
simprbi |
⊢ ( 𝑟 ∈ ( 𝑈 ∩ Rng ) → 𝑟 ∈ Rng ) |
10 |
7 9
|
syl6bi |
⊢ ( 𝜑 → ( 𝑟 ∈ ( Base ‘ 𝐶 ) → 𝑟 ∈ Rng ) ) |
11 |
10
|
imp |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → 𝑟 ∈ Rng ) |
12 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → 𝑍 ∈ ( Ring ∖ NzRing ) ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 ) |
14 |
|
eqid |
⊢ ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑟 ) |
15 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) |
16 |
13 14 15
|
zrrnghm |
⊢ ( ( 𝑟 ∈ Rng ∧ 𝑍 ∈ ( Ring ∖ NzRing ) ) → ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) ∈ ( 𝑍 RngHomo 𝑟 ) ) |
17 |
11 12 16
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) ∈ ( 𝑍 RngHomo 𝑟 ) ) |
18 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) ∈ ( 𝑍 RngHomo 𝑟 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) ∈ ( 𝑍 RngHomo 𝑟 ) ) |
19 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → 𝑈 ∈ 𝑉 ) |
20 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
21 |
|
eldifi |
⊢ ( 𝑍 ∈ ( Ring ∖ NzRing ) → 𝑍 ∈ Ring ) |
22 |
|
ringrng |
⊢ ( 𝑍 ∈ Ring → 𝑍 ∈ Rng ) |
23 |
3 21 22
|
3syl |
⊢ ( 𝜑 → 𝑍 ∈ Rng ) |
24 |
4 23
|
elind |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑈 ∩ Rng ) ) |
25 |
24 6
|
eleqtrrd |
⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ 𝐶 ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → 𝑍 ∈ ( Base ‘ 𝐶 ) ) |
27 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → 𝑟 ∈ ( Base ‘ 𝐶 ) ) |
28 |
2 5 19 20 26 27
|
rngchom |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) = ( 𝑍 RngHomo 𝑟 ) ) |
29 |
28
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑍 RngHomo 𝑟 ) = ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) |
30 |
29
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) ∈ ( 𝑍 RngHomo 𝑟 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) ) |
31 |
30
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) ∈ ( 𝑍 RngHomo 𝑟 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) |
32 |
28
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ↔ ℎ ∈ ( 𝑍 RngHomo 𝑟 ) ) ) |
33 |
|
eqid |
⊢ ( Base ‘ 𝑟 ) = ( Base ‘ 𝑟 ) |
34 |
13 33
|
rnghmf |
⊢ ( ℎ ∈ ( 𝑍 RngHomo 𝑟 ) → ℎ : ( Base ‘ 𝑍 ) ⟶ ( Base ‘ 𝑟 ) ) |
35 |
32 34
|
syl6bi |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) → ℎ : ( Base ‘ 𝑍 ) ⟶ ( Base ‘ 𝑟 ) ) ) |
36 |
35
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) → ℎ : ( Base ‘ 𝑍 ) ⟶ ( Base ‘ 𝑟 ) ) |
37 |
|
ffn |
⊢ ( ℎ : ( Base ‘ 𝑍 ) ⟶ ( Base ‘ 𝑟 ) → ℎ Fn ( Base ‘ 𝑍 ) ) |
38 |
37
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) ∧ ℎ : ( Base ‘ 𝑍 ) ⟶ ( Base ‘ 𝑟 ) ) → ℎ Fn ( Base ‘ 𝑍 ) ) |
39 |
|
fvex |
⊢ ( 0g ‘ 𝑟 ) ∈ V |
40 |
39 15
|
fnmpti |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) Fn ( Base ‘ 𝑍 ) |
41 |
40
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) ∧ ℎ : ( Base ‘ 𝑍 ) ⟶ ( Base ‘ 𝑟 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) Fn ( Base ‘ 𝑍 ) ) |
42 |
32
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) → ℎ ∈ ( 𝑍 RngHomo 𝑟 ) ) |
43 |
|
rnghmghm |
⊢ ( ℎ ∈ ( 𝑍 RngHomo 𝑟 ) → ℎ ∈ ( 𝑍 GrpHom 𝑟 ) ) |
44 |
|
eqid |
⊢ ( 0g ‘ 𝑍 ) = ( 0g ‘ 𝑍 ) |
45 |
44 14
|
ghmid |
⊢ ( ℎ ∈ ( 𝑍 GrpHom 𝑟 ) → ( ℎ ‘ ( 0g ‘ 𝑍 ) ) = ( 0g ‘ 𝑟 ) ) |
46 |
42 43 45
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) → ( ℎ ‘ ( 0g ‘ 𝑍 ) ) = ( 0g ‘ 𝑟 ) ) |
47 |
46
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) ∧ ℎ : ( Base ‘ 𝑍 ) ⟶ ( Base ‘ 𝑟 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑍 ) ) → ( ℎ ‘ ( 0g ‘ 𝑍 ) ) = ( 0g ‘ 𝑟 ) ) |
48 |
13 44
|
0ringbas |
⊢ ( 𝑍 ∈ ( Ring ∖ NzRing ) → ( Base ‘ 𝑍 ) = { ( 0g ‘ 𝑍 ) } ) |
49 |
3 48
|
syl |
⊢ ( 𝜑 → ( Base ‘ 𝑍 ) = { ( 0g ‘ 𝑍 ) } ) |
50 |
49
|
eleq2d |
⊢ ( 𝜑 → ( 𝑎 ∈ ( Base ‘ 𝑍 ) ↔ 𝑎 ∈ { ( 0g ‘ 𝑍 ) } ) ) |
51 |
|
elsni |
⊢ ( 𝑎 ∈ { ( 0g ‘ 𝑍 ) } → 𝑎 = ( 0g ‘ 𝑍 ) ) |
52 |
51
|
fveq2d |
⊢ ( 𝑎 ∈ { ( 0g ‘ 𝑍 ) } → ( ℎ ‘ 𝑎 ) = ( ℎ ‘ ( 0g ‘ 𝑍 ) ) ) |
53 |
50 52
|
syl6bi |
⊢ ( 𝜑 → ( 𝑎 ∈ ( Base ‘ 𝑍 ) → ( ℎ ‘ 𝑎 ) = ( ℎ ‘ ( 0g ‘ 𝑍 ) ) ) ) |
54 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑎 ∈ ( Base ‘ 𝑍 ) → ( ℎ ‘ 𝑎 ) = ( ℎ ‘ ( 0g ‘ 𝑍 ) ) ) ) |
55 |
54
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) ∧ ℎ : ( Base ‘ 𝑍 ) ⟶ ( Base ‘ 𝑟 ) ) → ( 𝑎 ∈ ( Base ‘ 𝑍 ) → ( ℎ ‘ 𝑎 ) = ( ℎ ‘ ( 0g ‘ 𝑍 ) ) ) ) |
56 |
55
|
imp |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) ∧ ℎ : ( Base ‘ 𝑍 ) ⟶ ( Base ‘ 𝑟 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑍 ) ) → ( ℎ ‘ 𝑎 ) = ( ℎ ‘ ( 0g ‘ 𝑍 ) ) ) |
57 |
|
eqidd |
⊢ ( 𝑎 ∈ ( Base ‘ 𝑍 ) → ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) ) |
58 |
|
eqidd |
⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑍 ) ∧ 𝑥 = 𝑎 ) → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑟 ) ) |
59 |
|
id |
⊢ ( 𝑎 ∈ ( Base ‘ 𝑍 ) → 𝑎 ∈ ( Base ‘ 𝑍 ) ) |
60 |
39
|
a1i |
⊢ ( 𝑎 ∈ ( Base ‘ 𝑍 ) → ( 0g ‘ 𝑟 ) ∈ V ) |
61 |
57 58 59 60
|
fvmptd |
⊢ ( 𝑎 ∈ ( Base ‘ 𝑍 ) → ( ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) ‘ 𝑎 ) = ( 0g ‘ 𝑟 ) ) |
62 |
61
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) ∧ ℎ : ( Base ‘ 𝑍 ) ⟶ ( Base ‘ 𝑟 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑍 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) ‘ 𝑎 ) = ( 0g ‘ 𝑟 ) ) |
63 |
47 56 62
|
3eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) ∧ ℎ : ( Base ‘ 𝑍 ) ⟶ ( Base ‘ 𝑟 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑍 ) ) → ( ℎ ‘ 𝑎 ) = ( ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) ‘ 𝑎 ) ) |
64 |
38 41 63
|
eqfnfvd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) ∧ ℎ : ( Base ‘ 𝑍 ) ⟶ ( Base ‘ 𝑟 ) ) → ℎ = ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) ) |
65 |
36 64
|
mpdan |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) → ℎ = ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) ) |
66 |
65
|
ex |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) → ℎ = ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) ) ) |
67 |
66
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) ∈ ( 𝑍 RngHomo 𝑟 ) ) → ( ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) → ℎ = ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) ) ) |
68 |
67
|
alrimiv |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) ∈ ( 𝑍 RngHomo 𝑟 ) ) → ∀ ℎ ( ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) → ℎ = ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) ) ) |
69 |
18 31 68
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) ∈ ( 𝑍 RngHomo 𝑟 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) ∈ ( 𝑍 RngHomo 𝑟 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ∧ ∀ ℎ ( ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) → ℎ = ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) ) ) ) |
70 |
17 69
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) ∈ ( 𝑍 RngHomo 𝑟 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ∧ ∀ ℎ ( ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) → ℎ = ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) ) ) ) |
71 |
|
eleq1 |
⊢ ( ℎ = ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) → ( ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) ) |
72 |
71
|
eqeu |
⊢ ( ( ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) ∈ ( 𝑍 RngHomo 𝑟 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ∧ ∀ ℎ ( ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) → ℎ = ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 0g ‘ 𝑟 ) ) ) ) → ∃! ℎ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) |
73 |
70 72
|
syl |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ∃! ℎ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) |
74 |
73
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑟 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) |
75 |
2
|
rngccat |
⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
76 |
1 75
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
77 |
5 20 76 25
|
isinito |
⊢ ( 𝜑 → ( 𝑍 ∈ ( InitO ‘ 𝐶 ) ↔ ∀ 𝑟 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) ) |
78 |
74 77
|
mpbird |
⊢ ( 𝜑 → 𝑍 ∈ ( InitO ‘ 𝐶 ) ) |